Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Cora Bergantiños

    Since the founding of Drosophila genetics by Thomas Hunt Morgan and his colleagues over 100 years ago, the experimental induction of mosaicism has featured prominently in its recognition as an unsurpassed genetic model organism. The use... more
    Since the founding of Drosophila genetics by Thomas Hunt Morgan and his colleagues over 100 years ago, the experimental induction of mosaicism has featured prominently in its recognition as an unsurpassed genetic model organism. The use of genetic mosaics has facilitated the discovery of a wide variety of developmental processes, identified specific cell lineages, allowed the study of recessive embryonic lethal mutations, and demonstrated the existence of cell competition. Here, we discuss how genetic mosaicism in Drosophila became an invaluable research tool that revolutionized developmental biology. We describe the prevailing methods used to produce mosaic animals, and highlight advantages and disadvantages of each genetic system. We cover methods ranging from simple “twin-spot” analysis to more sophisticated systems of multicolor labeling.
    Developing tissues that contain mutant or compromised cells present risks to animal health. Accordingly, the appearance of a population of suboptimal cells in a tissue elicits cellular interactions that prevent their contribution to the... more
    Developing tissues that contain mutant or compromised cells present risks to animal health. Accordingly, the appearance of a population of suboptimal cells in a tissue elicits cellular interactions that prevent their contribution to the adult. Here we report that this quality control process, cell competition, uses specific components of the evolutionarily ancient and conserved innate immune system to eliminate Drosophila cells perceived as unfit. We find that Toll-related receptors (TRRs) and the cytokine Spätzle (Spz) lead to NFκB-dependent apoptosis. Diverse "loser" cells require different TRRs and NFκB factors and activate distinct pro-death genes, implying that the particular response is stipulated by the competitive context. Our findings demonstrate a functional repurposing of components of TRRs and NFκB signaling modules in the surveillance of cell fitness during development.
    Cell competition employs comparisons of fitness to selectively eliminate cells sensed as less healthy. In Drosophila, apoptotic elimination of the weaker "loser" cells from growing wing discs is induced by a signaling module... more
    Cell competition employs comparisons of fitness to selectively eliminate cells sensed as less healthy. In Drosophila, apoptotic elimination of the weaker "loser" cells from growing wing discs is induced by a signaling module consisting of the Toll ligand Spätzle (Spz), several Toll-related receptors, and NF-κB factors. How this module is activated and restricted to competing disc cells is unknown. Here, we use Myc-induced cell competition to demonstrate that loser cell elimination requires local wing disc synthesis of Spz. We identify Spz processing enzyme (SPE) and modular serine protease (ModSP) as activators of Spz-regulated competitive signaling and show that "winner" cells trigger elimination of nearby WT cells by boosting SPE production. Moreover, Spz requires both Toll and Toll-8 to induce apoptosis of wing disc cells. Thus, during cell competition, Spz-mediated signaling is strictly confined to the imaginal disc, allowing errors in tissue fitness to be corrected without compromising organismal physiology.
    Regeneration and tissue repair allow damaged or lost body parts to be replaced. After injury or fragmentation of Drosophila imaginal discs, regeneration leads to the development of normal adult structures. This process is likely to... more
    Regeneration and tissue repair allow damaged or lost body parts to be replaced. After injury or fragmentation of Drosophila imaginal discs, regeneration leads to the development of normal adult structures. This process is likely to involve a combination of cell rearrangement and compensatory proliferation. However, the detailed mechanisms underlying these processes are poorly understood. We have established a system to allow temporally restricted induction of cell death in situ. Using Gal4/Gal80 and UAS-rpr constructs, targeted ablation of a region of the disc could be performed and regeneration monitored without the requirement for microsurgical manipulation. Using a ptc-Gal4 construct to drive rpr expression in the wing disc resulted in a stripe of dead cells in the anterior compartment flanking the anteroposterior boundary, whereas a sal-Gal4 driver generated a dead domain that includes both anterior and posterior cells. Under these conditions, regenerated tissues were derived fr...
    Many animals display a capacity to regenerate tissues or even a complete body. One of the main goals of regenerative biology is to identify the genes and genetic networks necessary for this process. Drosophila offers an ideal model system... more
    Many animals display a capacity to regenerate tissues or even a complete body. One of the main goals of regenerative biology is to identify the genes and genetic networks necessary for this process. Drosophila offers an ideal model system for such studies. The wide range of genetic and genomic approaches available for use in flies has helped in initiating the deciphering of the mechanisms underlying regeneration, and the results may be applicable to other organisms, including mammals. Moreover, most models of regeneration require experimental manipulation, whereas in Drosophila discrete domains can be ablated by genetically induced methods. Here, we present a summary of current research into imaginal disc regeneration and discuss the power of this tissue as a tool for understanding the genetics of regeneration.