Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    David Mushet

    We explored how a geographic information system modeling approach could be used to quantify supporting ecosystem services related to the type, abundance, and distribution of landscape components. Specifically, we use the Integrated... more
    We explored how a geographic information system modeling approach could be used to quantify supporting ecosystem services related to the type, abundance, and distribution of landscape components. Specifically, we use the Integrated Valuation of Ecosystem Services and Tradeoffs model to quantify habitats that support amphibians and birds, floral resources that support pollinators, native-plant communities that support regional biodiversity, and above- and below-ground carbon stores in the Des Moines Lobe ecoregion of the U.S. We quantified services under two scenarios, one that represented the 2012 Des Moines Lobe landscape, and one that simulated the conversion to crop production of wetlands and surrounding uplands conserved under the USDA Agricultural Conservation Easement Program (ACEP). While ACEP easements only covered 0.35% of the ecoregion, preserved wetlands and grasslands provided for 19,020 ha of amphibian habitat, 21,462 ha of grassland-bird habitat, 18,798 ha of high-qual...
    Prairie-pothole wetlands provide the critical habitat necessary for supporting North American migratory waterfowl populations. However, climate and land-use change threaten the sustainability of these wetland ecosystems. Very few... more
    Prairie-pothole wetlands provide the critical habitat necessary for supporting North American migratory waterfowl populations. However, climate and land-use change threaten the sustainability of these wetland ecosystems. Very few experiments and analyses have been designed to investigate the relative impacts of climate and land-use change drivers, as well as the antagonistic or synergistic interactions among these drivers on ecosystem processes. Prairie-pothole wetland water budgets are highly dependent on atmospheric inputs and especially surface runoff, which makes them especially susceptible to changes in climate and land use. Here, we present the history of prairie-pothole climate and land-use change research and address the following research questions: 1) What are the relative effects of climate and land-use change on the sustainability of prairie-pothole wetlands? and 2) Do the effects of climate and land-use change interact differently under different climatic conditions? To...
    Tillage can destroy or greatly disturb indicators of hydric soils and hydrophytic vegetation, making delineation of tilled wetlands difficult. The remains of aquatic invertebrates (e.g., shells, drought-resistant eggs, and trichopteran... more
    Tillage can destroy or greatly disturb indicators of hydric soils and hydrophytic vegetation, making delineation of tilled wetlands difficult. The remains of aquatic invertebrates (e.g., shells, drought-resistant eggs, and trichopteran cases) are easily identifiable and persist in wetland substrates even when wetlands are dry. Additionally, these remains are not easily destroyed by mechanical tillage. To test the feasibility of using
    ABSTRACT This study addresses the geologic and hydrogeochemical processes operating at a range of scales within the prairie pothole region (PPR). The PPR is a 750,000 km2 portion of north central North America that hosts millions of small... more
    ABSTRACT This study addresses the geologic and hydrogeochemical processes operating at a range of scales within the prairie pothole region (PPR). The PPR is a 750,000 km2 portion of north central North America that hosts millions of small wetlands known to be critical habitat for waterfowl and other wildlife. At a local scale, we characterized the geochemical evolution of the 92-ha Cottonwood Lake study area (CWLSA), located in North Dakota, USA. Critical zone processes are the long-term determinant of wetland water and groundwater geochemistry via the interaction of oxygenated groundwater with pyrite in the underlying glacial till. Pyrite oxidation produced a brown, iron oxide-bearing surface layer locally over 13 m thick and an estimated minimum of 1.3 × 1010 g sulfate (SO42 −) at CWLSA. We show that the majority of this SO42− now resides in solid-phase gypsum (CaSO4•2H2O) and gypsum-saturated groundwater. Results from the CWLSA were scaled up to a 9700 km2 area surrounding CWLSA using ~ 1800 drill logs and literature data on wetland water chemistry for 178 wetlands within this larger area. The oxidized brown zone depth and wetland water compositional trends are very similar to the CWLSA. Additionally, surface water data from 176 southern Canadian pothole wetlands that conform to the same wetland water geochemical trends as those recorded in the CWLSA further corroborate that SO42 − accumulation driven by pyrite oxidation is a nearly ubiquitous process in the prairie pothole region and distinguishes PPR wetlands from other wetlands worldwide that have a similar overall hydrology.
    We compared the macroinvertebrate and amphibian communities of 12 excavated and 12 natural wetlands in western North Dakota, USA, to assess the effects of artificially lengthened hydroperiods on the biotic communities ofwetlands in this... more
    We compared the macroinvertebrate and amphibian communities of 12 excavated and 12 natural wetlands in western North Dakota, USA, to assess the effects of artificially lengthened hydroperiods on the biotic communities ofwetlands in this semi-arid region. Excavatedwetlandswere much deeper and captured greater volumes ofwater than natural wetlands. Most excavated wetlands maintained water throughout the study period (May to October 1999),
    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis... more
    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis niliaca), and sprangletop (Leptochloa fasicularis). Barnyardgrass (Echinochloa crusgalli) grew taller in irrigated wetlands, but no significant difference in weight was detected. Only sprangletop yielded larger seed masses in response
    ... David M. Mushet, Ned H. Euliss, Jr, and Terry L. Shaffer US Geological Survey Northern Prairie Wildlife Research Center 8711 37th St. ... However, Galatowitsch and van der Valk (1996) found that while deep marsh and sub-mersed plant... more
    ... David M. Mushet, Ned H. Euliss, Jr, and Terry L. Shaffer US Geological Survey Northern Prairie Wildlife Research Center 8711 37th St. ... However, Galatowitsch and van der Valk (1996) found that while deep marsh and sub-mersed plant species appeared to be comparable, the ...
    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to... more
    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to develop IBIs for prairie pothole wetlands, only one, the Index of Plant Community Integrity (IPCI), has reported success. We evaluated the IPCI and its ability to
    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic... more
    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the n...