Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Eric Hayden

    Biosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in... more
    Biosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in vivo biosensors have been challenging. Using aptamer-coupled ribozyme libraries and a novel ribozyme regeneration method, we developed de novo rapid in vitro evolution of RNA biosensors (DRIVER) that enables multiplexed discovery of biosensors. With DRIVER and high-throughput characterization (CleaveSeq) fully automated on liquid-handling systems, we identified and validated biosensors against six small molecules, including five for which no aptamers were previously found. DRIVER-evolved biosensors were applied directly to regulate gene expression in yeast, displaying activation ratios up to 33-fold. DRIVER biosensors were also applied in detecting metabolite production from a multi-enzyme biosynthetic pathway. This work demonstrates DRIVER as a scal...
    The Azoarcus group I ribozyme was broken into four fragments, 39-63 nucleotides long, that can self-assemble into covalently contiguous ribozymes via RNA-directed recombination events. The fragments have no activity individually yet can... more
    The Azoarcus group I ribozyme was broken into four fragments, 39-63 nucleotides long, that can self-assemble into covalently contiguous ribozymes via RNA-directed recombination events. The fragments have no activity individually yet can cooperate through base pairing and tertiary interactions to produce stable trans complexes at 48 degrees C. These complexes can then catalyze a sequence of energy-neutral recombination reactions utilizing other oligomers as substrates, assembling covalent versions of the ribozyme. Up to 17% of the original fragments are converted into approximately 200 nucleotide products in 8 hr. Assembly occurs primarily by only one of many possible pathways, and the reaction is driven in the correct and forward direction by the burial of key base-pairing regions in stems after recombination. Autocatalysis, and hence self-replication, is inferred by a reaction rate increase upon doping the reaction with full-length RNA.
    The encapsulation of information-bearing macromolecules inside protocells is a critical step in scenarios for the origins of life on the Earth as well as for the construction of artificial living systems. For these protocells to emulate... more
    The encapsulation of information-bearing macromolecules inside protocells is a critical step in scenarios for the origins of life on the Earth as well as for the construction of artificial living systems. For these protocells to emulate life, they must be able to transmit genetic information to other cells. We have used a water-in-oil emulsion system to simulate the compartmentalization of catalytic RNA molecules. By exploiting RNA-directed recombination reactions previously developed in our laboratory, including a ribozyme self-assembly pathway, we demonstrate that it is possible for information to be exchanged among protocells. This can happen either indirectly by the passage of divalent cations through the inter-protocellular medium (oil), or by the direct interaction of two or more protocells that allows RNA molecules to be exchanged. The degree of agitation affects the ability of such exchange. The consequences of these results include the implications that prototypical living systems can transmit information among compartments, and that the environment can regulate the extent of this crosstalk.
    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it... more
    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population's response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.
    A bis(alkyl) substituted, asymmetric polyoxometalate [[CH3(CH2)3]4N]4[[CH3(CH2)11Si]2OSiW11O39], was prepared and incorporated into monolayer and multilayer thin films using Langmuir-Blodgett techniques.
    No-bias binding: The abiotic template-directed synthesis of RNA could have been a key process in the origins of life on Earth. Recreating this process in the laboratory has been challenging, yet a combination of strategies has given rise... more
    No-bias binding: The abiotic template-directed synthesis of RNA could have been a key process in the origins of life on Earth. Recreating this process in the laboratory has been challenging, yet a combination of strategies has given rise to a synthesis that is both efficient and unbiased against any of the four nucleotides.