This review covers the general roles of members of the cysteine protease family of caspases in th... more This review covers the general roles of members of the cysteine protease family of caspases in the process of apoptosis (programmed cell death) looking at their participation in both the "extrinsic" cell death receptor and the "intrinsic" mitochondrial cell death pathways. It defines the difference between initiator and effector caspases and shows the progression of caspase activations that ends up in the apoptotic cell death and elimination of a damaged cell. The review then presents what is currently know about the participation of caspases in the programmed cell death of inner ear sensory cells during the process of normal development and maturation of the inner ear and their importance in this process as illustrated by the results of caspase-3 gene knockout experiments. The participation of specific caspases and the sequence of their activation in the elimination (apoptosis) of damaged sensory cells from adult inner ears after an injury that generates oxidative stress are reviewed. Both the possibility and the potential efficacy of caspase inhibition with a broad-spectrum pancaspase inhibitor as an interventional therapy to treat and rescue oxidative stress-damaged inner ear sensory cells from apoptosis are presented and discussed.
The cellular origin and molecular mechanisms regulating pigmentation of head and neck are largely... more The cellular origin and molecular mechanisms regulating pigmentation of head and neck are largely unknown. Melanocyte specification is controlled by the transcriptional activity of Mitf, but no general logic has emerged to explain how Mitf and progenitor transcriptional activities consolidate melanocyte and progenitor cell fates. We show that cranial melanocytes arise from at least two different cellular sources: initially from nerve-associated Schwann cell precursors (SCPs) and later from a cellular source that is independent of nerves. Unlike the midbrain-hindbrain cluster from which melanoblasts arise independently of nerves, a large center of melanocytes in and around cranial nerves IX-X is derived from SCPs, as shown by genetic cell-lineage tracing and analysis of ErbB3-null mutant mice. Conditional gain- and loss-of-function experiments show genetically that cell fates in the neural crest involve both the SRY transcription factor Sox2 and Mitf, which consolidate an SCP progenitor or melanocyte fate by cross-regulatory interactions. A gradual downregulation of Sox2 in progenitors during development permits the differentiation of both neural crest- and SCP-derived progenitors into melanocytes, and an initial small pool of nerve-associated melanoblasts expands in number and disperses under the control of endothelin receptor B (Ednrb) and Wnt5a signaling.
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. ... more Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.
Oxidative stress insults such as neurotrophin withdrawal, sound trauma, hypoxia/ischemia, ototoxi... more Oxidative stress insults such as neurotrophin withdrawal, sound trauma, hypoxia/ischemia, ototoxic antibiotics, and chemotherapeutic agents have been shown to induce apoptosis of both auditory hair cells and neurons. In this paper, we review some components of the apoptotic pathways leading to the death of hair cells and auditory induced by growth factor withdrawal or cisplatin intoxication: (1) reactive oxygen species and free radicals are formed as by-products of several metabolic pathways and these molecules can themselves cause cell damage by reacting with cellular proteins; (2) activation of caspases, and (3) activation of calpain. These mechanisms have several different points at which inhibitors could be targeted to protect cells from programmed cell death, including the prevention of oxidative stress-induced apoptosis and the activation of caspases and calpains.
This review covers the general roles of members of the cysteine protease family of caspases in th... more This review covers the general roles of members of the cysteine protease family of caspases in the process of apoptosis (programmed cell death) looking at their participation in both the "extrinsic" cell death receptor and the "intrinsic" mitochondrial cell death pathways. It defines the difference between initiator and effector caspases and shows the progression of caspase activations that ends up in the apoptotic cell death and elimination of a damaged cell. The review then presents what is currently know about the participation of caspases in the programmed cell death of inner ear sensory cells during the process of normal development and maturation of the inner ear and their importance in this process as illustrated by the results of caspase-3 gene knockout experiments. The participation of specific caspases and the sequence of their activation in the elimination (apoptosis) of damaged sensory cells from adult inner ears after an injury that generates oxidative stress are reviewed. Both the possibility and the potential efficacy of caspase inhibition with a broad-spectrum pancaspase inhibitor as an interventional therapy to treat and rescue oxidative stress-damaged inner ear sensory cells from apoptosis are presented and discussed.
The cellular origin and molecular mechanisms regulating pigmentation of head and neck are largely... more The cellular origin and molecular mechanisms regulating pigmentation of head and neck are largely unknown. Melanocyte specification is controlled by the transcriptional activity of Mitf, but no general logic has emerged to explain how Mitf and progenitor transcriptional activities consolidate melanocyte and progenitor cell fates. We show that cranial melanocytes arise from at least two different cellular sources: initially from nerve-associated Schwann cell precursors (SCPs) and later from a cellular source that is independent of nerves. Unlike the midbrain-hindbrain cluster from which melanoblasts arise independently of nerves, a large center of melanocytes in and around cranial nerves IX-X is derived from SCPs, as shown by genetic cell-lineage tracing and analysis of ErbB3-null mutant mice. Conditional gain- and loss-of-function experiments show genetically that cell fates in the neural crest involve both the SRY transcription factor Sox2 and Mitf, which consolidate an SCP progenitor or melanocyte fate by cross-regulatory interactions. A gradual downregulation of Sox2 in progenitors during development permits the differentiation of both neural crest- and SCP-derived progenitors into melanocytes, and an initial small pool of nerve-associated melanoblasts expands in number and disperses under the control of endothelin receptor B (Ednrb) and Wnt5a signaling.
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. ... more Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.
Oxidative stress insults such as neurotrophin withdrawal, sound trauma, hypoxia/ischemia, ototoxi... more Oxidative stress insults such as neurotrophin withdrawal, sound trauma, hypoxia/ischemia, ototoxic antibiotics, and chemotherapeutic agents have been shown to induce apoptosis of both auditory hair cells and neurons. In this paper, we review some components of the apoptotic pathways leading to the death of hair cells and auditory induced by growth factor withdrawal or cisplatin intoxication: (1) reactive oxygen species and free radicals are formed as by-products of several metabolic pathways and these molecules can themselves cause cell damage by reacting with cellular proteins; (2) activation of caspases, and (3) activation of calpain. These mechanisms have several different points at which inhibitors could be targeted to protect cells from programmed cell death, including the prevention of oxidative stress-induced apoptosis and the activation of caspases and calpains.
Uploads
Papers by Francois Lallemend