Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Germana Rappa

    Germana Rappa

    Extracellular membrane vesicles (EVs) are emerging as new vehicles in intercellular communication, but how the biological information contained in EVs is shared between cells remains elusive. Several mechanisms have been described to... more
    Extracellular membrane vesicles (EVs) are emerging as new vehicles in intercellular communication, but how the biological information contained in EVs is shared between cells remains elusive. Several mechanisms have been described to explain their release from donor cells and the initial step of their uptake by recipient cells, which triggers a cellular response. Yet, the intracellular routes and subcellular fate of EV content upon internalization remain poorly characterized. This is particularly true for EV-associated proteins and nucleic acids that shuttle to the nucleus of host cells. In this review, we will describe and discuss the release of EVs from donor cells, their uptake by recipient cells, and the fate of their cargoes, focusing on a novel intracellular route wherein small GTPase Rab7+ late endosomes containing endocytosed EVs enter into nuclear envelope invaginations and deliver their cargo components to the nucleoplasm of recipient cells. A tripartite protein complex co...
    The diagnostic approach to thyroid cancer is one of the most challenging issues in oncology of the endocrine system because of its high incidence (3.8% of all new cancer cases in the US) and the difficulty to distinguish benign from... more
    The diagnostic approach to thyroid cancer is one of the most challenging issues in oncology of the endocrine system because of its high incidence (3.8% of all new cancer cases in the US) and the difficulty to distinguish benign from malignant non-functional thyroid nodules and establish the cervical lymph node involvement during staging. Routine diagnosis of thyroid nodules usually relies on a fine-needle aspirate biopsy, which is invasive and often inaccurate. Therefore, there is an urgent need to identify novel, accurate, and non-invasive diagnostic procedures. Liquid biopsy, as a non-invasive approach for the detection of diagnostic biomarkers for early tumor diagnosis, prognosis, and disease monitoring, may be of particular benefit in this context. Extracellular vesicles (EVs) are a consistent source of tumor-derived RNA due to their prevalence in circulating bodily fluids, the well-established isolation protocols, and the fact that RNA in phospholipid bilayer-enclosed vesicles ...
    The endocytic pathway plays an instrumental role in recycling internalized molecules back to the plasma membrane or in directing them to lysosomes for degradation. We recently reported a new role of endosomes-the delivery of components... more
    The endocytic pathway plays an instrumental role in recycling internalized molecules back to the plasma membrane or in directing them to lysosomes for degradation. We recently reported a new role of endosomes-the delivery of components from extracellular vesicles (EVs) to the nucleoplasm of recipient cells. Using indirect immunofluorescence, FRET, immunoisolation techniques, and RNAi, we report here a tripartite protein complex (referred to as the VOR complex) that is essential for the nuclear transfer of EV-derived components by orchestrating the specific localization of late endosomes into nucleoplasmic reticulum. We found that the VOR complex contains the endoplasmic reticulum-localized vesicle-associated membrane protein (VAMP)-associated protein A (VAP-A), the cytoplasmic oxysterol-binding protein-related protein 3 (ORP3), and late endosome-associated small GTPase Rab7. The silencing of VAP-A or ORP3 abrogated the association of Rab7-positive late endosomes with nuclear envelop...
    The study of extracellular vesicles (EVs) in cancer progression is a complex and rapidly evolving field. Whole categories of cellular interactions in cancer which were originally presumed to be due solely to soluble secreted molecules... more
    The study of extracellular vesicles (EVs) in cancer progression is a complex and rapidly evolving field. Whole categories of cellular interactions in cancer which were originally presumed to be due solely to soluble secreted molecules have now evolved to include membrane-enclosed extracellular vesicles (EVs), which include both exosomes and shed microvesicles (MVs), and can contain many of the same molecules as those secreted in soluble form but many different molecules as well. EVs released by cancer cells can transfer mRNA, miRNA, and proteins to different recipient cells within the tumor microenvironment, in both an autocrine and paracrine manner, causing a significant impact on signaling pathways, mRNA transcription, and protein expression. The transfer of EVs to target cells, in turn, supports cancer growth, immunosuppression, and metastasis formation. This review focuses exclusively on breast cancer EVs with an emphasis on breast cancer-derived exosomes, keeping in mind that b...
    Topoisomerase II has been suggested to have a role in the early events of differentiation. This possibility was evaluated by measuring the effects of inhibitors of topoisomerase II on the induction of the differentiation of WEHI-3B D+... more
    Topoisomerase II has been suggested to have a role in the early events of differentiation. This possibility was evaluated by measuring the effects of inhibitors of topoisomerase II on the induction of the differentiation of WEHI-3B D+ monomyelocytic leukemia cells. Differentiation of this cell line was induced along the granulocytic pathway by treatment with the topoisomerase II inhibitors novobiocin (150-300 microM), teniposide (20-50 nM), etoposide (0.1 microM), elsamicin (0.5 microM), and doxorubicin (40 nM). Maturation was assessed by the morphological appearance of mature forms of the granulocytic lineage, an increase in cell surface Fc receptors, the ability to reduce nitroblue tetrazolium, and the loss of proliferative capacity. In contrast, the non-topoisomerase II-reactive agent cisplatin and the topoisomerase I-reactive drug camptothecin did not cause the maturation of WEHI-3B D+ cells. Aclacinomycin A and retinoic acid, which are known efficacious inducers of the differen...
    Interaction of breast cancer cells (BCCs) with stromal components is critical for tumor growth and metastasis. Here, we assessed the role of CD9 in adhesion, migration and invasiveness of BCCs. We used co-cultures of BCCs and bone... more
    Interaction of breast cancer cells (BCCs) with stromal components is critical for tumor growth and metastasis. Here, we assessed the role of CD9 in adhesion, migration and invasiveness of BCCs. We used co-cultures of BCCs and bone marrow-derived multipotent mesenchymal stromal cells (MSCs), and analyzed their behavior and morphology by dynamic total internal reflection fluorescence, confocal and scanning electron microscopy. 83, 16 and 10% of contacts between MDA-MB-231 (MDA), MA-11 or MCF-7 cells and MSCs, respectively, resulted in MSC invasion. MDA cells developed long magnupodia, lamellipodia and dorsal microvilli, whereas long microvilli emerged from MA-11 cells. MCF-7 cells displayed large dorsal ruffles. CD9 knockdown and antibody blockage in MDA cells inhibited MSC invasion by 95 and 70%, respectively, suggesting that CD9 is required for this process. Remarkably, CD9-deficient MDA cells displayed significant alteration of their plasma membrane, harboring numerous peripheral a...
    The mrp (multidrug resistance protein) gene has been associated with the multidrug resistance of cancer cells in vitro and in vivo. To gain information on its physiological role, embryonic stem cells were used to generate mice homozygous... more
    The mrp (multidrug resistance protein) gene has been associated with the multidrug resistance of cancer cells in vitro and in vivo. To gain information on its physiological role, embryonic stem cells were used to generate mice homozygous for a disruption of the mrp gene, resulting in complete abrogation of mrp expression. No physiological abnormalities were observed, at least up to 4 months of age. Viability, fertility, and a range of histological, hematological, and serum-chemical parameters were similar in mrp(+/+) and mrp(-/-) mice. mrp(-/-) mice displayed an increased sensitivity to etoposide phosphate (2-fold) accompanied by greater bone marrow toxicity, whereas the acute toxicity of sodium arsenite was equivalent in mrp(+/+) and mrp(-/-) mice. Tissue levels of glutathione (GSH) were elevated in breast, lung, heart, kidney, muscle, colon, testes, bone marrow cells, blood mononuclear leukocytes, and blood erythrocytes of mrp(-/-) mice and were unchanged in organs known to expres...
    The MRP (multidrug resistance protein) gene, a member of the ubiquitous superfamily of ATP-binding cassette transporters, is associated with the multidrug resistance of mammalian cells to natural product anticancer agents. We have... more
    The MRP (multidrug resistance protein) gene, a member of the ubiquitous superfamily of ATP-binding cassette transporters, is associated with the multidrug resistance of mammalian cells to natural product anticancer agents. We have previously shown that abrogation of MRP expression by gene targeting leads to hypersensitivity to several drugs. In two independently produced MRP double knockout clones, the baseline export of glutathione (GSH) was one-half that of wild-type embryonic stem (ES) cells. The export of GSH from wild-type ES cells, but not from the MRP double knockout clones, increased in the presence of etoposide (VP-16) and sodium arsenite, accompanied by equivalent decreases in intracellular levels of GSH. In the two MRP double knockout clones, the intracellular steady-state concentration of etoposide was twofold greater than that in wild-type cells. Depletion of intracellular GSH by D,L-buthionine sulfoximine increased the intracellular accumulation of radiolabeled etoposi...
    Overexpression of the multidrug resistance-associated protein (MRP) gene has been implicated in the resistance of tumor cell lines to a wide array of chemotherapeutic agents, but its normal physiological function(s) remains unknown. We... more
    Overexpression of the multidrug resistance-associated protein (MRP) gene has been implicated in the resistance of tumor cell lines to a wide array of chemotherapeutic agents, but its normal physiological function(s) remains unknown. We have compared the sensitivity to chemotherapeutic drugs and toxins of wild-type W9.5 embryonic stem cells (ES) and of single and double MRP gene knockout cells derived therefrom. MRP expression was totally abrogated in the double knockout cell line and partially abrogated in the single knockout cell line. Reverse transcription-PCR analyses demonstrated that the MDR1, MDR2, and MDR3 genes were not expressed in either wild-type or MRP knock-out cells. The cytotoxic activities of etoposide, teniposide, vincristine, doxorubicin, daunorubicin, and sodium arsenite were significantly greater in double knockout cells than in parental wild-type ES cells; single knockout ES cells displayed an intermediate level of sensitivity. In contrast, no difference in sens...
    Previous reports from this laboratory have demonstrated that novobiocin produces supraadditive cytotoxicity and increases the formation of drug-stabilized topoisomerase II-DNA covalent complexes in WEHI-3B myelomonocytic leukemia and A549... more
    Previous reports from this laboratory have demonstrated that novobiocin produces supraadditive cytotoxicity and increases the formation of drug-stabilized topoisomerase II-DNA covalent complexes in WEHI-3B myelomonocytic leukemia and A549 lung carcinoma cells when combined with etoposide (VP-16). Inhibition of the efflux of VP-16 by novobiocin is responsible for the increase in VP-16 accumulation, which in turn leads to increased formation of VP-16-stabilized topoisomerase II-DNA covalent complexes and increased cytotoxicity. We now report that novobiocin synergistically enhanced the sensitivity of the multidrug resistant variants, WEHI-3B/NOVO and A549(VP)28, to VP-16, causing almost complete reversal of the resistance to the epipodophyllotoxin. These two tumor cell variants are resistant to several topoisomerase II-targeted drugs, particularly VP-16, but not to Vinca alkaloids; this finding corresponds to the fact that they do not overexpress the P-glycoprotein. The effects of nov...
    N10-Propargyl-5,8-dideazafolic acid (CB 3717), a new antifolate which directly inhibits thymidylate synthase and which is now under early clinical investigation, was compared with methotrexate (MTX) for its antiproliferative activity and... more
    N10-Propargyl-5,8-dideazafolic acid (CB 3717), a new antifolate which directly inhibits thymidylate synthase and which is now under early clinical investigation, was compared with methotrexate (MTX) for its antiproliferative activity and mode of action on M14 human melanoma cell line and NIH/3T3 murine fibroblasts transfected with human c-Ha-ras oncogene (NIH/3T3R). CB 3717 was as active as MTX on both cell lines in inhibiting colony formation, but 20-100 times less potent. After 24 h of exposure both drugs caused an accumulation of cells in the G1 phase of the cell cycle, probably because of inhibition of DNA synthesis and blockage at the G1-S boundary. In NIH/3T3R treated for 16 h with 2 microM MTX or 200 microM CB 3717, we found DNA single-strand breaks amounting to approximately 130 and 140 rad equivalents, respectively, and a considerable number of DNA double-strand breaks, far more than expected if they had been the result of the proximity of single-strand breaks on the two co...
    A novobiocin-resistant subline of WEHI-3B D+ murine monomyelocytic leukemia cells was developed by the continuous exposure of cells to this agent in vitro. Sensitive (WEHI-3B/S) and novobiocin-resistant (WEHI-3B/NOVO) sublines were cloned... more
    A novobiocin-resistant subline of WEHI-3B D+ murine monomyelocytic leukemia cells was developed by the continuous exposure of cells to this agent in vitro. Sensitive (WEHI-3B/S) and novobiocin-resistant (WEHI-3B/NOVO) sublines were cloned in vitro. WEHI-3B/NOVO cells were stable in the absence of novobiocin for more than 3 months, and the sensitive and resistant clones displayed the same growth rate, cell cycle distribution, cell size, DNA and protein content, and cloning efficiency. Novobiocin has been shown to compete with ATP for the ATP-binding site of topoisomerase II; therefore, intracellular ATP levels can influence the cellular sensitivity to novobiocin. High-performance liquid chromatographic analysis of total cell extracts demonstrated that no difference exists between WEHI-3B/S and WEHI-3B/NOVO cells in the content of ATP. Furthermore, exposure of both cell lines to novobiocin did not affect intracellular ATP levels. In addition to an approximately 2-fold level of resista...
    WEHI-3B/NOVO is a cloned murine leukemia cell line selected for resistance to novobiocin that is cross-resistant to the cytotoxic action of etoposide (VP-16) and to a lesser extent to a variety of other topoisomerase II (topo II)-reactive... more
    WEHI-3B/NOVO is a cloned murine leukemia cell line selected for resistance to novobiocin that is cross-resistant to the cytotoxic action of etoposide (VP-16) and to a lesser extent to a variety of other topoisomerase II (topo II)-reactive drugs. We have reported previously (Cancer Res. 52: 2782-2790, 1992) that WEHI-3B/NOVO cells exhibit a pronounced decrease in VP-16 induced DNA-topo II cross-link formation compared to the parental WEHI-3B/S cell line in intact cells, in the absence of a significant difference in the P4 unknotting activity of topo II assayed in nuclear extracts. Because the pattern of cross-resistance was suggestive of a topo II-mediated mechanism, we have ascertained whether a change in topo II can account for the multidrug-resistant phenotype of WEHI-3B/NOVO cells. No differences existed between WEHI-3B/S and WEHI-3B/NOVO cells in topo II mRNA and protein levels, as well as in the amount of topo II associated with the nuclear matrix. Neither sensitive nor resista...
    Tetraspanin-29 (CD9) is an integral membrane protein involved in several fundamental cell processes and in cancer metastasis. Here, characterization of a panel of breast cancer cells revealed a nuclear pool of CD9, not present in normal... more
    Tetraspanin-29 (CD9) is an integral membrane protein involved in several fundamental cell processes and in cancer metastasis. Here, characterization of a panel of breast cancer cells revealed a nuclear pool of CD9, not present in normal human mammary epithelial cells. Antibody binding to surface CD9 of breast cancer cells resulted in increased nuclear CD9 fluorescence. CD9 was also found, along with a plasma membrane–associated pool, in the nuclei of all primary ductal breast carcinoma patient specimens analyzed. In all patients, about 40% of the total CD9 cellular fluorescence was nuclear. CD9 colocalized at the nuclear level with CEP97, a protein implicated in centrosome function, and with the IGSF8, an established CD9 partner in the plasma membrane. Co-immunoprecipitation of CEP97 and IGSF8 with CD9 was shown in nuclear extracts from breast cancer cells expressing a CD9–GFP fusion protein. However, by fluorescence resonance energy transfer (FRET) analysis, no direct binding of CD...
    Many types of tumors are organized in a hierarchy of heterogeneous cell populations, with only a small proportion of cancer stem cells (CSCs) capable of sustaining tumor formation and growth, giving rise to differentiated cells, which... more
    Many types of tumors are organized in a hierarchy of heterogeneous cell populations, with only a small proportion of cancer stem cells (CSCs) capable of sustaining tumor formation and growth, giving rise to differentiated cells, which form the bulk of the tumor. Proof of the existence of CSC comes from clinical experience with germ-cell cancers, where the elimination of a subset of undifferentiated cells can cure patients (Horwich et al., 2006), and from the study of leukemic cells (Bonnet and Dick, 1997; Lapidot et al., 1994; and Yilmaz et al., 2006). The discovery of CSC in leukemias as well as in many solid malignancies, including breast carcinoma (Al-Hajj et al. 2003; Fang et al., 2005; Hemmati et al., 2003; Kim et al., 2005; Lawson et al., 2007; Li et al., 2007; Ricci-Vitiani et al., 2007; Singh et al., 2003; and Xin et al., 2005), has suggested a unifying CSC theory of cancer development. The reported general insensitivity of CSC to chemotherapy and radiation treatment (Bao et...
    CD133 (Prominin-1) is considered the most important cancer stem cell (CSC)-associated marker identified so far, with increased expression in the CSC fraction of a large variety of human malignancies, including melanoma. Here we... more
    CD133 (Prominin-1) is considered the most important cancer stem cell (CSC)-associated marker identified so far, with increased expression in the CSC fraction of a large variety of human malignancies, including melanoma. Here we investigated the effects of CD133 downregulation in vitro and in vivo in human metastatic melanoma. The average number of CD133 molecules on the cell surface of FEMX-I melanoma cells was decreased by 8.7-fold and 1.8-fold using two different short hairpin RNAs. Downregulation of CD133, confirmed by immunocytochemistry, Western blotting, microarray analysis, and reverse transcription-polymerase chain reaction, resulted in slower cell growth, reduced cell motility, and decreased capacity to form spheroids under stem cell-like growth conditions. Clonal analysis revealed that the reduction in growth rate was proportional to the extent of CD133 downregulation. Monoclonal antibodies directed against two different epitopes of the CD133 protein induced a specific, do...
    Exosomes can be viewed as complex “messages” packaged to survive trips to other cells in the local microenvironment and, through body fluids, to distant sites. A large body of evidence indicates a pro-metastatic role for certain types of... more
    Exosomes can be viewed as complex “messages” packaged to survive trips to other cells in the local microenvironment and, through body fluids, to distant sites. A large body of evidence indicates a pro-metastatic role for certain types of cancer exosomes. We previously reported that prominin-1 had a pro-metastatic role in melanoma cells and that microvesicles released from metastatic melanoma cells expressed high levels of prominin-1. With the goal to explore the mechanisms that govern proteo-lipidic-microRNA sorting in cancer exosomes and their potential contribution(s) to the metastatic phenotype, we here employed prominin-1-based immunomagnetic separation in combination with filtration and ultracentrifugation to purify prominin-1-expressing exosomes (prom1-exo) from melanoma and colon carcinoma cells. Prom1-exo contained 154 proteins, including all of the 14 proteins most frequently expressed in exosomes, and multiple pro-metastatic proteins, including CD44, MAPK4K, GTP-binding pr...