Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Holly McDonough

    Induction of molecular chaperones is the characteristic protective response to environmental stress, and is regulated by a transcriptional program that depends on heat shock factor 1 (HSF1), which is normally under negative regulatory... more
    Induction of molecular chaperones is the characteristic protective response to environmental stress, and is regulated by a transcriptional program that depends on heat shock factor 1 (HSF1), which is normally under negative regulatory control by molecular chaperones Hsp70 and Hsp90. In metazoan species, the chaperone system also provides protection against apoptosis. We demonstrate that the dual function co-chaperone/ubiquitin ligase CHIP (C-terminus of Hsp70-interacting protein) regulates activation of the stress-chaperone response through induced trimerization and transcriptional activation of HSF1, and is required for protection against stress-induced apoptosis in murine fibroblasts. The consequences of this function are demonstrated by the phenotype of mice lacking CHIP, which develop normally but are temperature-sensitive and develop apoptosis in multiple organs after environmental challenge. CHIP exerts a central and unique role in tuning the response to stress at multiple lev...
    CHIP, carboxy terminus of Hsc70 interacting protein, is a cytoplasmic protein whose amino acid sequence is highly conserved across species. It is most highly expressed in cardiac and skeletal muscle and brain. The primary amino acid... more
    CHIP, carboxy terminus of Hsc70 interacting protein, is a cytoplasmic protein whose amino acid sequence is highly conserved across species. It is most highly expressed in cardiac and skeletal muscle and brain. The primary amino acid sequence is characterized by 3 domains, a tetratricopeptide repeat (TPR) domain at its amino terminus, a U-box domain at its carboxy terminus, and an intervening charged domain. CHIP interacts with the molecular chaperones Hsc70-Hsp70 and Hsp90 through its TPR domain, whereas its U-box domain contains its E3 ubiquitin ligase activity. Its interaction with these molecular chaperones results in client substrate ubiquitylation and degradation by the proteasome. Thus, CHIP acts to tilt the folding-refolding machinery toward the degradative pathway, and it serves as a link between the two. Because protein degradation is required for healthy cellular function, CHIP's ability to degrade proteins that are the signature of disease, eg, ErbB2 in breast and ovarian cancers, could prove to be a point of therapeutic intervention.
    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased... more
    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP-/- mice with voluntary exercise. CHIP-/- mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP-/- mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo.