Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Huaxin Sheng

    ABSTRACTIschemic stroke induces rapid loss in bone mineral density that is up to 13 times greater than during normal aging, leading to a markedly increased risk of fracture. Little is known about skeletal changes following stroke beyond... more
    ABSTRACTIschemic stroke induces rapid loss in bone mineral density that is up to 13 times greater than during normal aging, leading to a markedly increased risk of fracture. Little is known about skeletal changes following stroke beyond density loss. In this study we use a mild-moderate middle cerebral artery occlusion model to determine the effects of ischemic stroke without bedrest on bone microstructure, dynamic bone formation, and tissue composition. Twenty-seven 12-week-old male C57Bl/6J mice received either a stroke or sham surgery and then either received daily treadmill exercise or remained sedentary for four weeks. All mice were ambulatory immediately following stroke, and limb coordination during treadmill exercise was unaffected by stroke, indicating similar mechanical loading across limbs for both stroke and sham groups. Stroke did not directly detriment microstructure, but exercise only stimulated adaptation in the sham group, not the stroke group, with increased bone v...
    Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, (H2O)MnTnHex-2-PyP5+ (MnHex) carrying long hexyl chains, is a lipophilic mimic of superoxide dismutase (SOD) and a redox-active drug candidate. MnHex crosses the blood–brain... more
    Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, (H2O)MnTnHex-2-PyP5+ (MnHex) carrying long hexyl chains, is a lipophilic mimic of superoxide dismutase (SOD) and a redox-active drug candidate. MnHex crosses the blood–brain barrier, and improved neurologic outcome and decreased infarct size and inflammation in a rat middle cerebral artery occlusion (MCAO) ischemic stroke model. Yet, the dose and the therapeutic efficacy of Mn porphyrin were limited by an adverse effect of arterial hypotension. An equally lipophilic Fe analog, (OH)FeTnHex-2-PyP4+ (FeHex), is as redox-active and potent SOD mimic in vitro. With different coordination geometry of the metal site, FeHex has one hydroxo (OH) ligand (instead of water) bound to the Fe center in the axial position. It has ~2 orders of magnitude higher efficacy than MnHex in an SOD-deficient E. coli model of oxidative stress. In vivo, it does not cause arterial hypotension and is less toxic to mice. We thus evaluated FeHex versus MnHex...
    Background The mechanisms underlying worse outcome at advanced age after cardiac arrest ( CA ) and resuscitation are not well understood. Because protein homeostasis (proteostasis) is essential for cellular and organismal health, but is... more
    Background The mechanisms underlying worse outcome at advanced age after cardiac arrest ( CA ) and resuscitation are not well understood. Because protein homeostasis (proteostasis) is essential for cellular and organismal health, but is impaired after CA , we investigated the effects of age on proteostasis-related prosurvival pathways activated after CA . Methods and Results Young (2-3 months old) and aged (21-22 months old) male C57Bl/6 mice were subjected to CA and cardiopulmonary resuscitation ( CPR ). Functional outcome and organ damage were evaluated by assessing neurologic deficits, histological features, and creatinine level. CA / CPR -related changes in small ubiquitin-like modifier conjugation, ubiquitination, and the unfolded protein response were analyzed by measuring mRNA and protein levels in the brain, kidney, and spinal cord. Thiamet-G was used to increase O-linked β-N-acetylglucosamine modification. After CA / CPR , aged mice had trended lower survival rates, more se...
    Optical-resolution photoacoustic microscopy (OR-PAM) has become a popular tool in small-animal hemodynamic studies. However, previous OR-PAM techniques variously lacked a high imaging speed and/or a large field of view, impeding the study... more
    Optical-resolution photoacoustic microscopy (OR-PAM) has become a popular tool in small-animal hemodynamic studies. However, previous OR-PAM techniques variously lacked a high imaging speed and/or a large field of view, impeding the study of highly dynamic physiologic and pathophysiologic processes over a large region of interest. Here we report a high-speed OR-PAM system with an ultra-wide field of view, enabled by an innovative water-immersible hexagon-mirror scanner. By driving the hexagon-mirror scanner with a high-precision DC motor, the new OR-PAM has achieved a cross-sectional frame rate of 900 Hz over a 12-mm scanning range, which is 3900 times faster than our previous motor-scanner-based system and 10 times faster than the MEMS-scanner-based system. Using this hexagon-scanner-based OR-PAM system, we have imaged epinephrine-induced vasoconstriction in the whole mouse ear and vascular reperfusion after ischemic stroke in the mouse cortex , with a high spatial resolution and h...
    The intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to... more
    The intestinal epithelium constitutes a crucial defense to the potentially life-threatening effects of gut microbiota. However, due to a complex underlying vasculature, hypoperfusion and resultant tissue ischemia pose a particular risk to function and integrity of the epithelium. The small ubiquitin-like modifier (SUMO) conjugation pathway critically regulates adaptive responses to metabolic stress and is of particular significance in the gut, as inducible knockout of the SUMO-conjugating enzyme Ubc9 results in rapid intestinal epithelial disintegration. Here we analyzed the pattern of individual SUMO isoforms in intestinal epithelium and investigated their roles in intestinal ischemia/reperfusion (I/R) damage. Immunostaining revealed that epithelial SUMO2/3 expression was almost exclusively limited to crypt epithelial nuclei in unchallenged mice. However, intestinal I/R or overexpression of Ubc9 caused a remarkable enhancement of epithelial SUMO2/3 staining along the crypt-villus a...
    Experimental cardiac arrest (CA) in aging research is infrequently studied in part due to the limitation of animal models. We aimed to develop an easily performed mouse CA model to meet this need. A standard mouse KCl-induced CA model... more
    Experimental cardiac arrest (CA) in aging research is infrequently studied in part due to the limitation of animal models. We aimed to develop an easily performed mouse CA model to meet this need. A standard mouse KCl-induced CA model using chest compressions and intravenous epinephrine for resuscitation was modified by blood withdrawal prior to CA onset, so as to decrease the requisite KCl dose to induce CA by decreasing the circulating blood volume. The modification was then compared to the standard model in young adult mice subjected to 8 min CA. 22-month old mice were then subjected to 8 min CA, resuscitated, and compared to young adult mice. Post-CA functional recovery was evaluated by measuring spontaneous locomotor activity pre-injury, and on post-CA days 1, 2, and 3. Neurological score and brain histology were examined on day 3. Brain elF2α phosphorylation levels were measured at 1 h to verify tissue stress. Compared to the standard model, the modification decreased cardiopu...
    Intracerebral hemorrhage (ICH) occurs in hypertensive patients and results in high rates of mortality and disability. This study determined whether bone marrow mesenchymal stem cell (BMSC) transplantation affects axonal regeneration and... more
    Intracerebral hemorrhage (ICH) occurs in hypertensive patients and results in high rates of mortality and disability. This study determined whether bone marrow mesenchymal stem cell (BMSC) transplantation affects axonal regeneration and examined the underlying mechanisms after the administration of PD98059 (p-ERK1/2 inhibitor) or/ and LY294002 (PI3K inhibitor). The hypothesis that was intended to be tested was that BMSC transplantation regulates the expression of growth-associated protein-43 (GAP-43) via the ERK1/2 and PI3K/Akt signaling pathways. Seventy-five male rats (250-280 g) were subjected to intracerebral blood injection and then randomly received a vehicle, BMSCs, PD98059 or LY294002 treatment. Neurological deficits were evaluated prior to injury and at 1, 3 and 7 days post-injury. The expression of GAP-43, Akt, p-Akt, ERK1/2, and p-ERK1/2 proteins was measured by western blot analysis. BMSC transplantation attenuated neurological deficits 3-7 days post-ICH. The expression ...
    Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein... more
    Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. Deletion o...
    Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) plays key roles in neurologic function in health and disease. Neuronal SUMOylation is essential for emotionality and cognition, and this pathway is dramatically activated in... more
    Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) plays key roles in neurologic function in health and disease. Neuronal SUMOylation is essential for emotionality and cognition, and this pathway is dramatically activated in post-ischemic neurons, a neuroprotective response to ischemia. It is also known from cell culture studies that SUMOylation modulates gene expression. However, it remains unknown how SUMOylation regulates neuronal gene expression in vivo, in the physiologic state and after ischemia, and modulates post-ischemic recovery of neurologic function. To address these important questions, we used a SUMO1-3 knockdown (SUMO-KD) mouse in which a Thy-1 promoter drives expression of 3 distinct microRNAs against SUMO1-3 to silence SUMO expression specifically in neurons. Wild-type and SUMO-KD mice were subjected to transient forebrain ischemia. Microarray analysis was performed in hippocampal CA1 samples, and neurologic function was evaluated. SUMOylation had opposi...
    Anesthetics have enabled major advances in development of experimental models of human stroke. Yet, their profound pharmacologic effects on neural function can confound the interpretation of experimental stroke research. Anesthetics have... more
    Anesthetics have enabled major advances in development of experimental models of human stroke. Yet, their profound pharmacologic effects on neural function can confound the interpretation of experimental stroke research. Anesthetics have species-, drug-, and dose-specific effects on cerebral blood flow and metabolism, neurovascular coupling, autoregulation, ischemic depolarizations, excitotoxicity, inflammation, neural networks, and numerous molecular pathways relevant for stroke outcome. Both preconditioning and postconditioning properties have been described. Anesthetics also modulate systemic arterial blood pressure, lung ventilation, and thermoregulation, all of which may interact with the ischemic insult as well as the therapeutic interventions. These confounds present a dilemma. Here, we provide an overview of the anesthetic mechanisms of action and molecular and physiologic effects on factors relevant to stroke outcomes that can guide the choice and optimization of the anesth...
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are increased following acute brain ischemia. These species have been associated with secondary injury that amplifies the magnitude of final neuronal damage. Work with both... more
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are increased following acute brain ischemia. These species have been associated with secondary injury that amplifies the magnitude of final neuronal damage. Work with both biochemical analyses and transgenic mice has shown that ROS/RNS production persists for many hours after the initial insult. This offers a potential therapeutic window for pharmacologic intervention of clinical relevance. Several classes of pharmacologic mimetics of superoxide dismutase/catalase have been synthesized. Evaluation of these catalytic antioxidants in laboratory models of acute brain injury has shown both robust neuroprotection and a prolonged therapeutic window at doses apparently devoid of neurotoxicity. (c) 2002 Prous Science. All rights reserved.
    Risk for ischemic stroke has a strong genetic basis, but heritable factors also contribute to the extent of damage after a stroke has occurred. We previously identified a locus on distal mouse chromosome 7 that contributes over 50% of the... more
    Risk for ischemic stroke has a strong genetic basis, but heritable factors also contribute to the extent of damage after a stroke has occurred. We previously identified a locus on distal mouse chromosome 7 that contributes over 50% of the variation in postischemic cerebral infarct volume observed between inbred strains. Here, we used ancestral haplotype analysis to fine-map this locus to 12 candidate genes. The gene encoding the IL-21 receptor (Il21r) showed a marked difference in strain-specific transcription levels and coding variants in neonatal and adult cortical tissue. Collateral vessel connections were moderately reduced in Il21r-deficient mice, and cerebral infarct volume increased 2.3-fold, suggesting that Il21r modulates both collateral vessel anatomy and innate neuroprotection. In brain slice explants, oxygen deprivation (OD) activated apoptotic pathways and increased neuronal cell death in IL-21 receptor-deficient (IL-21R-deficient) mice compared with control animals. We...
    During vasospasm after subarachnoid hemorrhage (SAH), cerebral blood vessels show structural changes consistent with the actions of vascular mitogens. We measured platelet-derived vascular growth factors (PDGFs) in the cerebrospinal fluid... more
    During vasospasm after subarachnoid hemorrhage (SAH), cerebral blood vessels show structural changes consistent with the actions of vascular mitogens. We measured platelet-derived vascular growth factors (PDGFs) in the cerebrospinal fluid (CSF) of patients after SAH and tested the effect of these factors on cerebral arteries in vivo and in vitro. CSF was sampled from 14 patients after SAH, 6 patients not suffering SAH, and 8 normal controls. ELISA was performed for PDGF-AB, transforming growth factor-beta1, and vascular endothelial growth factor. A mouse model was used to compare cerebral vascular cell proliferation and PDGF staining in SAH compared with sham-operated controls. Normal human pial arteries were incubated for 7 days in vitro, 2 groups with human blood clot and 1 with and 1 without PDGF antibodies. PDGF-AB concentrations in CSF from SAH patients were significantly higher than those from non-SAH patients and normal controls, both during the first week after SAH and for all time points measured. Smooth muscle and fibroblast proliferation was observed after SAH in the mouse model, and this cellular replication was observed in conjunction with PDGF protein at the sites of thrombus. In human pial arteries, localized thrombus stimulated vessel wall proliferation, and proliferation was blocked by neutralizing antibodies directed against PDGFs. Vascular mitogens are increased in the CSF of patients after SAH. Proliferation of cells in the vascular wall is associated with perivascular thrombus. Cellular proliferation and subsequent vessel wall thickening may contribute to the syndrome of delayed cerebral vasospasm.
    During vasospasm after subarachnoid hemorrhage (SAH), cerebral blood vessels show structural changes consistent with the actions of vascular mitogens. We measured platelet-derived vascular growth factors (PDGFs) in the cerebrospinal fluid... more
    During vasospasm after subarachnoid hemorrhage (SAH), cerebral blood vessels show structural changes consistent with the actions of vascular mitogens. We measured platelet-derived vascular growth factors (PDGFs) in the cerebrospinal fluid (CSF) of patients after SAH and tested the effect of these factors on cerebral arteries in vivo and in vitro. CSF was sampled from 14 patients after SAH, 6 patients not suffering SAH, and 8 normal controls. ELISA was performed for PDGF-AB, transforming growth factor-beta1, and vascular endothelial growth factor. A mouse model was used to compare cerebral vascular cell proliferation and PDGF staining in SAH compared with sham-operated controls. Normal human pial arteries were incubated for 7 days in vitro, 2 groups with human blood clot and 1 with and 1 without PDGF antibodies. PDGF-AB concentrations in CSF from SAH patients were significantly higher than those from non-SAH patients and normal controls, both during the first week after SAH and for all time points measured. Smooth muscle and fibroblast proliferation was observed after SAH in the mouse model, and this cellular replication was observed in conjunction with PDGF protein at the sites of thrombus. In human pial arteries, localized thrombus stimulated vessel wall proliferation, and proliferation was blocked by neutralizing antibodies directed against PDGFs. Vascular mitogens are increased in the CSF of patients after SAH. Proliferation of cells in the vascular wall is associated with perivascular thrombus. Cellular proliferation and subsequent vessel wall thickening may contribute to the syndrome of delayed cerebral vasospasm.
    Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor... more
    Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To determine the extent to which activation of the ATF6 UPR branch defines the fate and function of neurons after stroke, we generated a conditional and tamoxifen-inducible sATF6 knock-in mouse. To express sATF6 in forebrain neurons, we crossed our sATF6 knock-in mouse line with Emx1-Cre mice to generate ATF6-KI mice. After the ATF6 branch was activated in ATF6-KI mice with tamoxifen, mice were subjected to transient middle cerebral artery occlusion. Forced activation of the ATF6 UPR branch reduced infarct volume and improved functional outcome at 24 h after stroke. Increased autophagic activity...
    Cognitive dysfunction can be a long-term complication following subarachnoid hemorrhage (SAH). Preclinical models have been variously characterized to emulate this disorder. This study was designed to directly compare long-term cognitive... more
    Cognitive dysfunction can be a long-term complication following subarachnoid hemorrhage (SAH). Preclinical models have been variously characterized to emulate this disorder. This study was designed to directly compare long-term cognitive deficits in the context of similar levels of insult severity in the cisterna magna double-blood (DB) injection versus prechiasmatic blood (PB) injection SAH models. Pilot work identified blood injectate volumes necessary to provide similar mortality rates (20-25 %). Rats were then randomly assigned to DB or PB insults. Saline injection and naïve rats were used as controls. Functional and cognitive outcome was assessed over 35 days. DB and PB caused similar transient rotarod deficits. PB rats exhibited decreased anxiety behavior on the elevated plus maze, while anxiety was increased in DB. DB and PB caused differential deficits in the novel object recognition and novel object location tasks. Morris water maze performance was similarly altered in both...
    To evaluate the effect of age on the response of brains to an ischemic challenge, we subjected young and aged mice to transient forebrain ischemia, and analyzed the heat shock response and unfolded protein response, ubiquitin conjugation... more
    To evaluate the effect of age on the response of brains to an ischemic challenge, we subjected young and aged mice to transient forebrain ischemia, and analyzed the heat shock response and unfolded protein response, ubiquitin conjugation and SUMO conjugation, and O-linked β-N-acetylglucosamine modification of proteins (O-GlcNAcylation). The most prominent age-related difference was an inability of aged mice to activate O-GlcNAcylation. Considering many reports on the protective role of O-GlcNAcylation in various stress conditions including myocardial ischemia, this pathway could be a promising target for therapeutic intervention to improve functional recovery of aged patients following brain ischemia.
    In models of acute brain injury, progesterone improves recovery through several mechanisms including modulation of neuroinflammation. Secondary injury from neuroinflammation is a potential therapeutic target after intracerebral hemorrhage... more
    In models of acute brain injury, progesterone improves recovery through several mechanisms including modulation of neuroinflammation. Secondary injury from neuroinflammation is a potential therapeutic target after intracerebral hemorrhage (ICH). For potential translation of progesterone as a clinical acute ICH therapeutic, the present study sought to define efficacy of exogenous progesterone administration in ICH-relevant experimental paradigms. Young and aged C57BL/6 male, female, and ovariectomized (OVX) mice underwent left intrastriatal collagenase (0.05-0.075 U) or autologous whole blood (35 μl) injection. Progesterone at varying doses (4-16 mg/kg) was administered at 2, 5, 24, 48, and 72 h after injury. Rotarod and Morris water maze latencies were measured on days 1-7 and days 28-31 after injury, respectively. Hematoma volume, brain water content (cerebral edema), complementary immunohistochemistry, multiplex cytokine arrays, and inflammatory proteins were assessed at pre-speci...
    Preclinical evidence suggests that progesterone improves recovery after intracerebral hemorrhage (ICH); however, gonadal hormones have sex-specific effects. Therefore, an experimental model of ICH was used to assess recovery after... more
    Preclinical evidence suggests that progesterone improves recovery after intracerebral hemorrhage (ICH); however, gonadal hormones have sex-specific effects. Therefore, an experimental model of ICH was used to assess recovery after progesterone administration in male and female rats. ICH was induced in male and female Wistar rats via stereotactic intrastriatal injection of clostridal collagenase (0.5 U). Animals were randomized to receive vehicle or 8 mg/kg progesterone intraperitoneally at 2 h, then subcutaneously at 5, 24, 48, and 72 h post-injury. Outcomes included relevant physiology during the first 3 h, hemorrhage and edema evolution over the first 24 h, pro-inflammatory transcription factor and cytokine regulation at 24 h, rotarod latency and neuroseverity score over the first 7 days, and microglial activation/macrophage recruitment at 7 days after injury. Rotarod latency (p = 0.001) and neuroseverity score (p = 0.01) were improved in progesterone-treated males, but worsened i...
    To test the effects of a novel Mn porphyrin oxidative stress modifier, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE), for its radioprotective and radiosensitizing properties in normal tissue versus tumor,... more
    To test the effects of a novel Mn porphyrin oxidative stress modifier, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE), for its radioprotective and radiosensitizing properties in normal tissue versus tumor, respectively. Murine oral mucosa and salivary glands were treated with a range of radiation doses with or without MnBuOE to establish the dose-effect curves for mucositis and xerostomia. Radiation injury was quantified by intravital near-infrared imaging of cathepsin activity, assessment of salivation, and histologic analysis. To evaluate effects of MnBuOE on the tumor radiation response, we administered the drug as an adjuvant to fractionated radiation of FaDu xenografts. Again, a range of radiation therapy (RT) doses was administered to establish the radiation dose-effect curve. The 50% tumor control dose values with or without MnBuOE and dose-modifying factor were determined. MnBuOE protected normal tissue by reducing RT-mediated mucositis, xerostomia, and fibrosis. The dose-modifying factor for protection against xerostomia was 0.77. In contrast, MnBuOE increased tumor local control rates compared with controls. The dose-modifying factor, based on the ratio of 50% tumor control dose values, was 1.3. Immunohistochemistry showed that MnBuOE-treated tumors exhibited a significant influx of M1 tumor-associated macrophages, which provides mechanistic insight into its radiosensitizing effects in tumors. MnBuOE widens the therapeutic margin by decreasing the dose of radiation required to control tumor, while increasing normal tissue resistance to RT-mediated injury. This is the first study to quantitatively demonstrate the magnitude of a single drug's ability to radioprotect normal tissue while radiosensitizing tumor.
    Increased matrix metalloproteinase (MMP) activity contributes to glial scar formation that inhibits the repair path after spinal cord injury (SCI). We examined whether treatment with... more
    Increased matrix metalloproteinase (MMP) activity contributes to glial scar formation that inhibits the repair path after spinal cord injury (SCI). We examined whether treatment with N-​(2-​chloroethyl)-​5Z,​8Z,​11Z,​14Z-​eicosatetraenamide (ACEA), a selective synthetic cannabinoid receptor (CB1R) agonist, inhibits MMP and improves functional and histological recovery in a mouse spinal cord compression injury model. Injured mice randomly received either intraperitoneal ACEA (3mg/kg/day) or vehicle for up to 3 weeks. Behavioral, histological and biochemical assays were performed. Rotarod assessment and the Basso Mouse Scale score showed an improved performance following ACEA treatment concomitant with a decrease in compression lesion volume. MMP-9 and MMP-2 activity was measured at 1, 7 and 14 days post-SCI. SCI markedly increased MMP-9, but had negligible effect on MMP-2 activity. ACEA-treatment decreased MMP-9 activity by 80%, 49% and 56%, respectively (P<0.05) and had a smaller effect on MMP-2 activity. The CB1R antagonist SR141716, but not the CB2R antagonist SR144528, blocked ACEA-mediated decrease in MMP-9 activity confirming the role of the CB1R in the process. Collectively these data demonstrate that post-injury CB1R agonism can improve SCI outcome and also indicate marked attenuation of MMP-9 proteolytic enzyme activity as a biochemical mechanism.
    Small ubiquitin-like modifier (SUMO) conjugation is a post-translational modification associated with many human diseases. Characterization of the SUMO-modified proteome is pivotal to define the mechanistic link between SUMO conjugation... more
    Small ubiquitin-like modifier (SUMO) conjugation is a post-translational modification associated with many human diseases. Characterization of the SUMO-modified proteome is pivotal to define the mechanistic link between SUMO conjugation and such diseases. This is particularly evident for SUMO2/3 conjugation, which is massively activated after brain ischemia/stroke, and is believed to be a protective response. The purpose of this study was to perform a comprehensive analysis of the SUMO3-modified proteome regulated by brain ischemia using a novel SUMO transgenic mouse. To enable SUMO proteomics analysis in vivo, we generated transgenic mice conditionally expressing tagged SUMO1-3 paralogues. Transgenic mice were subjected to 10 minutes forebrain ischemia and 1 hour of reperfusion. SUMO3-conjugated proteins were enriched by anti-FLAG affinity purification and analyzed by liquid chromatography-tandem mass spectrometry. Characterization of SUMO transgenic mice demonstrated that all 3 ta...
    Reactive oxygen species contribute to ischemic brain injury. This study examined whether the porphyrin catalytic antioxidant manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) reduces oxidative stress and... more
    Reactive oxygen species contribute to ischemic brain injury. This study examined whether the porphyrin catalytic antioxidant manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) reduces oxidative stress and improves outcome from experimental cerebral ischemia. Rats that were subjected to 90 min focal ischemia and 7 d recovery were given MnTE-2-PyP(5+) (or vehicle) intracerebroventricularly 60 min before ischemia, or 5 or 90 min or 6 or 12 hr after reperfusion. Biomarkers of brain oxidative stress were measured at 4 hr after postischemic treatment (5 min or 6 hr). MnTE-2-PyP(5+), given 60 min before ischemia, improved neurologic scores and reduced total infarct size by 70%. MnTE-2-PyP(5+), given 5 or 90 min after reperfusion, reduced infarct size by 70-77% and had no effect on temperature. MnTE-2-PyP(5+) treatment 6 hr after ischemia reduced total infarct volume by 54% (vehicle, 131 +/- 60 mm(3); MnTE-2-PyP(5+), 300 ng, 60 +/- 68 mm(3)). Protection was obs...
    Apolipoprotein E-(apoE) deficient mice exhibit hypercholesterolemia, accelerated atherosclerosis and increased infarct size after middle cerebral artery occlusion (MCAO). This study examined whether worsened ischemic outcome is... more
    Apolipoprotein E-(apoE) deficient mice exhibit hypercholesterolemia, accelerated atherosclerosis and increased infarct size after middle cerebral artery occlusion (MCAO). This study examined whether worsened ischemic outcome is attributable to effects of apoE deficiency on cerebral circulation. Wild type and apoE-deficient mice underwent MCAO and autoradigraphic measurement of cerebral blood flow. Circle of Willis anatomy was examined in non-ischemic animals. Both groups exhibited similar reduction in blood flow. Both groups had 100% incidence of filling of the anterior communicating artery. The posterior communicating artery (PcomA) filled in 70% of wild type and 80% of apoE-deficient mice. Both groups had considerable variability in relative sizes of the PcmA. This study indicates that worsened outcome from MCAO of apoE-deficient mice is not attributable to any detectable vascular effects and offers validity to use of apoE-deficient mice for study of apoE as a factor in cerebral i...
    Hepatocyte growth factor (HGF), efficacious in preclinical models of acute central nervous system injury, is burdened by administration of full-length proteins. A multiinstitutional consortium investigated the efficacy of BB3, a small... more
    Hepatocyte growth factor (HGF), efficacious in preclinical models of acute central nervous system injury, is burdened by administration of full-length proteins. A multiinstitutional consortium investigated the efficacy of BB3, a small molecule with HGF-like activity that crosses the blood-brain barrier in rodent focal ischemic stroke using Stroke Therapy Academic Industry Roundtable (STAIR) and Good Laboratory Practice guidelines. In rats, BB3, begun 6 hours after temporary middle cerebral artery occlusion (tMCAO) reperfusion, or permanent middle cerebral artery occlusion (pMCAO) onset, and continued for 14 days consistently improved long-term neurologic function independent of sex, age, or laboratory. BB3 had little effect on cerebral infarct size and no effect on blood pressure. BB3 increased HGF receptor c-Met phosphorylation and synaptophysin expression in penumbral tissue consistent with a neurorestorative mechanism from HGF-like activity. In mouse tMCAO, BB3 starting 10 minute...
    Advertisement. Close Window. Close Window. Thank you for choosing to subscribe to the eTOC for Neurosurgery. Enter your Email address: Wolters Kluwer Health may email you for journal alerts and information, but is committed ...
    Hypothermia decreases the arterial PO(2) at which hemoglobin is 50% saturated (P(50)), increasing hemoglobin O(2)-binding affinity. We used RSR13, a synthetic allosteric modifier of hemoglobin that increases P(50), to study the role of... more
    Hypothermia decreases the arterial PO(2) at which hemoglobin is 50% saturated (P(50)), increasing hemoglobin O(2)-binding affinity. We used RSR13, a synthetic allosteric modifier of hemoglobin that increases P(50), to study the role of altered hemoglobin O(2)-binding affinity in mild hypothermic neuroprotection. RSR13 (150 mg/kg iv) restored P(50) to normothermic values. Rats underwent 70 min of middle cerebral artery occlusion (MCAO) at 30.0, 34.0, or 37.5 degrees C with hemoglobin saturation held at 98-100%. The 34.0 degrees C group received RSR13 or vehicle before ischemia. After 7 days of recovery, infarct volumes were reduced in all hypothermic groups, without evidence of a detrimental effect on infarct size or neurological score as a result of P(50) correction. To examine for a beneficial effect of P(50) correction, ischemia duration was increased to 120 min in rats maintained at 34.0 degrees C. Correction of P(50) by RSR13 did not alter cerebral infarct sizes or neurological ...
    Laser Doppler flowmetry (LDF) is widely used for estimating cerebral blood flow changes during intraluminal middle cerebral artery occlusion (MCAO). No investigation has systematically examined LDF efficacy in standardizing outcome. We... more
    Laser Doppler flowmetry (LDF) is widely used for estimating cerebral blood flow changes during intraluminal middle cerebral artery occlusion (MCAO). No investigation has systematically examined LDF efficacy in standardizing outcome. We examined MCAO histologic and behavioral outcome as a function of LDF measurement. Rats were subjected to 90min MCAO by 4 surgeons having different levels of MCAO surgical experience. LDF was measured in all rats during ischemia. By random assignment, LDF values were (Assisted) or were not (Blinded) made available to each surgeon during MCAO (n=12-17 per group). Neurologic and histologic outcomes were measured 7 days post-MCAO. A second study examined LDF effects on 1-day post-MCAO outcome. Pooled across surgeons, intra-ischemic %LDF change (P=0.12), neurologic scores (Assisted vs. Blinded=14±6 vs. 13±7, P=0.61, mean±standard deviation) and cerebral infarct volume (162±63mm(3)vs. 143±86mm(3), P=0.24) were not different between groups. Only for one surgeon (novice) did LDF use alter infarct volume (145±28mm(3)vs. 98±61mm(3), P=0.03). LDF use decreased infarct volume coefficient of variation (COV) by 35% (P=0.02), but had no effect on neurologic score COV. We compared intraluminal MCAO outcome as a function of LDF use. LDF measurement altered neither neurologic nor histologic MCAO outcome. LDF did not decrease neurologic deficit COV, but did decrease infarct volume COV. LDF may allow use of fewer animals if infarct volume is the primary dependent variable, but is unlikely to impact requisite sample sizes if neurologic function is of primary interest.
    SUMMARY Despite numerous defenses, the brain is vulnerable to oxidative stress resulting from ischemia/reperfusion. Excitotoxic stimulation of superoxide and nitric oxide production leads to formation of highly reactive products,including... more
    SUMMARY Despite numerous defenses, the brain is vulnerable to oxidative stress resulting from ischemia/reperfusion. Excitotoxic stimulation of superoxide and nitric oxide production leads to formation of highly reactive products,including peroxynitrite and hydroxyl radical, which are capable of damaging lipids, proteins and DNA. Use of transgenic mutants and selective pharmacological antioxidants has greatly increased understanding of the complex interplay between substrate deprivation and ischemic outcome. Recent evidence that reactive oxygen/nitrogen species play a critical role in initiation of apoptosis, mitochondrial permeability transition and poly(ADP-ribose) polymerase activation provides additional mechanisms for oxidative damage and new targets for post-ischemic therapeutic intervention. Because oxidative stress involves multiple post-ischemic cascades leading to cell death, effective prevention/treatment of ischemic brain injury is likely to require intervention at multip...
    Background and Purpose— Endothelial nitric oxide synthase (eNOS) activity is decreased after subarachnoid hemorrhage (SAH). Simvastatin increases eNOS activity. We hypothesized that simvastatin would increase eNOS protein and ameliorate... more
    Background and Purpose— Endothelial nitric oxide synthase (eNOS) activity is decreased after subarachnoid hemorrhage (SAH). Simvastatin increases eNOS activity. We hypothesized that simvastatin would increase eNOS protein and ameliorate SAH-induced cerebral vasospasm. Methods— Mice were treated with subcutaneous simvastatin or vehicle for 14 days and then subjected to endovascular perforation of the right anterior cerebral artery or sham surgery. Three days later, neurological deficits were scored (5 to 27; 27=normal), and middle cerebral artery diameter and eNOS protein were measured. The study was repeated, but simvastatin treatment was started after SAH or sham surgery. Results— In SAH mice, simvastatin pretreatment increased middle cerebral artery diameter (SAH-simvastatin=74±22 μm, SAH-vehicle=52±18 μm, P =0.03; sham-simvastatin=102±8 μm, sham-vehicle=105±6 μm). Pretreatment reduced neurological deficits (SAH-simvastatin=25±2, SAH-vehicle=20±2, P =0.005; sham-simvastatin and sh...

    And 62 more