Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Imen Graiet

    Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to... more
    Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to investigate the possible toxic outcomes of Epoxiconzole, a triazole fungicide, on the brain of adult rats in vivo, and in vitro on neural stem cells derived from the subventricular zone of newborn Wistar rats. Our results revealed that oral exposure to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing respectively NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days caused a considerable generation of oxidative stress in adult rat brain tissue. Furthermore, a significant augmentation in lipid peroxidation and protein oxidation has been found. Moreover, it induced an elevation of DNA fragmentation as assessed by the Comet assay. Indeed, EPX administration impaired activities of antioxidant enzymes and inhibited AChE activity. Concomitantly, this pesticide produced histological alterations in the brain of adult rats. Regarding the embryonic neural stem cells, we demonstrated that the treatment by EPX reduced the viability of cells with an IC50 of 10 μM. It also provoked the reduction of cell proliferation, and EPX triggered arrest in G1/S phase. The neurosphere formation and self-renewal capacity was reduced and associated with decreased differentiation. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. Our findings also showed that EPX induced apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspase-3. In addition, EPX promoted ROS production in neural stem cells. Interestingly, the pretreatment of neural stem cells with the N-acetylcysteine (ROS scavenger) attenuated EPX-induced cell death, disruption of neural stem cells properties, ROS generation and apoptosis. Thus, the use of this hazardous material should be restricted and carefully regulated.
    Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to... more
    Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to investigate the possible toxic outcomes of Epoxiconzole, a triazole fungicide, on the brain of adult rats in vivo, and in vitro on neural stem cells derived from the subventricular zone of newborn Wistar rats. Our results revealed that oral exposure to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing respectively NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days caused a considerable generation of oxidative stress in adult rat brain tissue. Furthermore, a significant augmentation in lipid peroxidation and protein oxidation has been found. Moreover, it induced an elevation of DNA fragmentation as assessed by the Comet assay. Indeed, EPX administration impaired activities of antioxidant enzymes and inhibited AChE activity. Concomitantly, this pesticide produced histological alterations in the brain of adult rats. Regarding the embryonic neural stem cells, we demonstrated that the treatment by EPX reduced the viability of cells with an IC50 of 10 μM. It also provoked the reduction of cell proliferation, and EPX triggered arrest in G1/S phase. The neurosphere formation and self-renewal capacity was reduced and associated with decreased differentiation. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. Our findings also showed that EPX induced apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspase-3. In addition, EPX promoted ROS production in neural stem cells. Interestingly, the pretreatment of neural stem cells with the N-acetylcysteine (ROS scavenger) attenuated EPX-induced cell death, disruption of neural stem cells properties, ROS generation and apoptosis. Thus, the use of this hazardous material should be restricted and carefully regulated.
    The di (2‐ethylhexyl) phthalate (DEHP) is a plasticizer used in the polyvinyl chloride industry. Human exposure to this plasticizer is inevitable and contributes to several side effects. In this study, we examined whether DEHP induces... more
    The di (2‐ethylhexyl) phthalate (DEHP) is a plasticizer used in the polyvinyl chloride industry. Human exposure to this plasticizer is inevitable and contributes to several side effects. In this study, we examined whether DEHP induces apoptosis and oxidative stress in embryonic kidney cells (HEK‐293) and whether the nuclear factor E2‐related factor 2 (Nrf‐2)/heme oxygenase‐1 (HO‐1) antioxidant pathway is involved in the pathogenesis of this process. We demonstrated that DEHP is cytotoxic to HEK‐293 cells. It causes oxidative damage through the generation of free radicals, induces lipid peroxidation, and alters superoxide dismutase and catalase activities. Simultaneously, DEHP treatment decreases the expression and the protein level of Nrf‐2 and HO‐1. Inhibition of the Nrf‐2/HO‐1 pathway is related to the mitochondrial pathway of apoptosis. This apoptotic process is characterized by a loss of mitochondrial transmembrane potential (ΔΨm) and upregulation of the expression of caspase‐3 ...