Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Iwan Setiawan

    Research Interests:
    The effect of agosterol A, a novel polyhydroxylated sterol acetate isolated from a marine sponge, on P-glycoprotein (P-gp)-mediated multidrug-resistant cells (KB-C2) and the multidrug resistance associated protein (MRPl)-mediated... more
    The effect of agosterol A, a novel polyhydroxylated sterol acetate isolated from a marine sponge, on P-glycoprotein (P-gp)-mediated multidrug-resistant cells (KB-C2) and the multidrug resistance associated protein (MRPl)-mediated multidrug-resistant cells (KB-CV60) was examined. Agosterol A reversed the resistance to colchicine in KB-C2 cells and also the resistance to vincristine in KB-CV60 cells at 3 to 10 μM concentration. Agosterol A at 3 μM increased the vincristine concentration in both KB-C2 cells and KB-CV60 cells to the level in parental KB-3-1 cells. Agosterol A also decreased the efflux of vincristine from both KB-C2 cells and KB-CV60 cells to the level seen in KB-3-1 cells. Agosterol A inhibited the [3H]azidopine-photolabeling of P-gp and also inhibited the uptake of [3H]S-(2,4-dinitrophenyl)glutathione (DNP-SG) in inside-out membrane vesicles prepared from KB-CV60 cells. We conclude that agosterol A directly inhibited drug efflux through P-gp and/or MRP1.
    Research Interests:
    In this study, soil contamination by PCBs, PBDEs, HBCDs and two novel BFRs such as 1,2-bis-(2,4,6-tribromopenoxy) ethane (BTBPE) and decabromodiphenyl ethane (DBDPE) in various locations such as industrial, urban, rural, dumping site and... more
    In this study, soil contamination by PCBs, PBDEs, HBCDs and two novel BFRs such as 1,2-bis-(2,4,6-tribromopenoxy) ethane (BTBPE) and decabromodiphenyl ethane (DBDPE) in various locations such as industrial, urban, rural, dumping site and agricultural areas of Surabaya, Indonesia has been characterized in order to evaluate their contamination status, profiles, potential sources, fate and behavior. Range and median concentrations of PCBs, PBDEs, HBCDs, BTBPE and DBDPE were ND – 9.6 (1.2), 0.069 – 24 (7.4), ND – 1.8 (0.48), ND – 1.7 (0.14) and ND – 7.6 (2.2) ng g−1 dw, respectively. Industrial, urban and dumping areas were inventoried as the main sources of these pollutants. Decreasing gradient levels were observed for these contaminants from industrial district, urban, dumping site, rural and agricultural areas, in that order. Furthermore, organic carbon contents and proximity to the point sources were found as the major controlling factors. Contaminant profiles were characterized by the predominance of hexa-, hepta- and penta-homologues for PCBs; deca-, nona- and octa- for PBDEs and α-isomer for HBCDs. Product mixtures such as Ar1260/KC600 and Ar1254/KC500 for PCBs, deca- and octa-BDEs for PBDEs were the possible common formulations used in study area. To our knowledge, this is a first comprehensive study on characterization of soil contamination by PCBs, PBDEs and HBCDs together with two novel BFRs in a highly industrialized city located in tropical region. This study provides baseline information for establishing national monitoring programs in Indonesia.► PCBs and BFRs were widely detected in surface soils from Surabaya City, Indonesia. ► Industrial, urban and open dumping sites were identified as the emission sources. ► TOC and distance from the point sources were major factors controlling the levels. ► Debromination and dechlorination contributes to PCB and BFR profiles in soils.
    Research Interests:
    A total of 33 surficial sediments from riverine and coastal waters from Surabaya, Indonesia were analyzed for PCBs and BFRs. Concentrations of PCBs (62 congeners), PBDEs (14 congeners) and HBCDs (3 isomers) varied from <DL–420, <DL–35 and... more
    A total of 33 surficial sediments from riverine and coastal waters from Surabaya, Indonesia were analyzed for PCBs and BFRs. Concentrations of PCBs (62 congeners), PBDEs (14 congeners) and HBCDs (3 isomers) varied from <DL–420, <DL–35 and <DL–5.4 ng g−1 dw, respectively. Higher concentrations of these compounds were found in riverine than coastal sediments. Their levels and distribution were influenced by proximity to the point sources and TOC. The predominant congeners were CB-153, -28, -138, -149, -180, -33 and BDE-209, -207, -206, -197, -196, -183, -99, -47 for PCBs and PBDEs, respectively, and γ-isomer for HBCDs. Debromination of BDE-209 might be taking place producing lower toxic congeners in sediment. Levels of PCBs in riverine sediments were comparable with some polluted areas worldwide, but PBDEs and HBCDs were lower. Hazard assessment of PCBs indicated possible toxic potential, particularly in areas close to point sources.► Riverine sediments have higher concentrations of PCBs and BFRs than coastal waters. ► Proximity to point sources, TOC and hydrodynamic location are factors controlling their levels. ► Land based activities in areas such harbors, urban, commercial and industrial were the major sources. ► PCBs levels in polluted riverine sediments of the present study exceeded the sediment quality guidelines standards.
    The oocytes of the South African clawed frog X. laevis are widely used for the expression of heterologous proteins. The functional characterization of membrane proteins in particular has significantly profited from the use of this... more
    The oocytes of the South African clawed frog X. laevis are widely used for the expression of heterologous proteins. The functional characterization of membrane proteins in particular has significantly profited from the use of this expression system. Heterologous cRNA can easily be ...
    The epithelial... more
    The epithelial Ca2&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus; channel TRPV5 (ECaC1) plays a key role in renal and intestinal Ca2&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;plus; (re)absorption and is thus regulated by 1,25(OH) 2D3. The present study aims to explore whether TRPV5 is regulated by the serum and glucocorticoid inducible kinase SGK1, a kinase transcriptionally upregulated by 1,25(OH) 2D3. To this end cRNA encoding TRPV5 has been injected into Xenopus oocytes
    The amino acid transporter SN1 with substrate specificity identical to the amino acid transport system N is expressed mainly in astrocytes and hepatocytes where it accomplishes Na+-coupled glutamine uptake and efflux. To characterize... more
    The amino acid transporter SN1 with substrate specificity identical to the amino acid transport system N is expressed mainly in astrocytes and hepatocytes where it accomplishes Na+-coupled glutamine uptake and efflux. To characterize properties and regulation of SN1, substrate-induced currents and/or radioactive glutamine uptake were determined in Xenopus oocytes injected with cRNA encoding SN1, the ubiquitin ligase Nedd4-2, and/or the constitutively active serum and glucocorticoid inducible kinase S422DSGK1, its isoform SGK3, and the constitutively active protein kinase B T308D,S473DPKB. The substrate-induced currents were enhanced by increasing glutamine and/or Na+ concentrations, hyperpolarization, and alkalinization (pH 8.0). They were inhibited by acidification (pH 6.0). Coexpression of Nedd4-2 downregulated SN1-mediated transport, an effect reversed by coexpression of S422DSGK1, SGK3, and T308D,S473DPKB. It is concluded that SN1 is a target for the ubiquitin ligase Nedd4-2, which is inactivated by the serum and glucocorticoid inducible kinase SGK1, its isoform SGK3, and protein kinase B.
    Transfer of glutamine between astrocytes and neurons is an essential part of the glutamate–glutamine cycle in the brain. Here we have investigated how the neural glutamine transporter (rATA1/GlnT) works. Rat ATA1 was expressed in Xenopus... more
    Transfer of glutamine between astrocytes and neurons is an essential part of the glutamate–glutamine cycle in the brain. Here we have investigated how the neural glutamine transporter (rATA1/GlnT) works. Rat ATA1 was expressed in Xenopus laevis oocytes and examined using two-electrode voltage-clamp recordings, ion-sensitive microelectrodes and tracer flux experiments. Glutamine transport via rATA1 was electrogenic and caused inward currents that did not reverse at positive holding potentials. Currents were induced by a variety of neutral amino acids in the following relative order Ala>Ser/Gln/Asn/His/Cys/Met >MeAIB/Gly>Thr/Pro/Tyr/Val, where MeAIB is the amino acid analogue N-methylaminoisobutyric acid. The uptake of glutamine and the corresponding currents depended on Na+ and pH. Hill-coefficient and flux studies with 22NaCl indicated a cotransport stoichiometry 1 Na+ per transport cycle. The transporter also showed uncoupled Na+ transport, particularly when alanine was used as the substrate. Although substrate uptake increased strongly with increasing pH, no change of intracellular pH was observed during transport. A decrease of the intracellular pH similarly inhibited glutamine transport via ATA1, suggesting that the pH dependence was an allosteric effect on the transporter.
    Ample pharmacological evidence points to a role of kinases in the regulation of cell volume. Given the limited selectivity of most inhibitors, however, the specific molecules involved have remained largely elusive. The search for cell... more
    Ample pharmacological evidence points to a role of kinases in the regulation of cell volume. Given the limited selectivity of most inhibitors, however, the specific molecules involved have remained largely elusive. The search for cell volume regulated genes in liver HepG2 cells led to the discovery of the human serum- and glucocorticoid-dependent serine/threonine kinase hsgk1. Transcription and expression of hsgk1 is markedly and rapidly upregulated by osmotic and isotonic cell shrinkage. The effect of osmotic cell shrinkage on hsgk1 is mediated by p38 kinase. Further stimuli of hsgk1 transcription include glucocorticoids, aldosterone, TGF-β1, serum, increase of intracellular Ca2+ and phorbolesters, whereas cAMP downregulates hsgk1 transcription. The hsgk1 protein is expressed in several epithelial tissues including human pancreas, intestine, kidney, and shark rectal gland. Co-expression of hsgk1 with the renal epithelial Na+-channel ENaC or the Na+/K+/2Cl−-cotransporter NKCC2 (BSC1) in Xenopus oocytes, accelerates insertion of the transport proteins into the cell membrane and thus, stimulates channel or transport activity. Thus, hsgk1 participates in the regulation of transport by steroids and secretagogues increasing intracellular Ca2+-activity. The stimulation of hsgk1 transcription by TGF-β1 may further bear pathophysiological relevance.
    Extracellular pH has been shown previously to influence transport via type-II Na+/phosphate (NaPi) transporters by modifying the affinity of the carrier for Na+ and by altering the availability of divalent and monovalent phosphate. As the... more
    Extracellular pH has been shown previously to influence transport via type-II Na+/phosphate (NaPi) transporters by modifying the affinity of the carrier for Na+ and by altering the availability of divalent and monovalent phosphate. As the transport of monovalent phosphate would be expected to acidify, and that of divalent phosphate to alkalinize the cell interior, the effect of phosphate transport on cytosolic pH was studied using ion selective microelectrodes in Xenopus oocytes expressing NaPi-3 or NaPi-5. At an alkaline extracellular pH (pHe) of 8.0, addition of phosphate elicited a strong inward current, depolarization of the cell membrane and cytosolic alkalinization. At pHe 6.0 the phosphate-induced inward current and depolarization were reduced and the alkalinization completely abolished. In conclusion, at alkaline pHe phosphate transport is enhanced and the transport of divalent phosphate prevails. At pHe 6.0, phosphate transport is attenuated and is accomplished by transport of both divalent and monovalent phosphate.
    Expression of the constitutively active form of serum and glucocorticoid-dependent kinase ((S422D)SGK1) in Xenopus oocytes has recently been shown to upregulate endogenous Na(+)/K(+)-ATPase activity, an effect presumably participating in... more
    Expression of the constitutively active form of serum and glucocorticoid-dependent kinase ((S422D)SGK1) in Xenopus oocytes has recently been shown to upregulate endogenous Na(+)/K(+)-ATPase activity, an effect presumably participating in the regulation of cellular K(+) uptake and transepithelial Na(+) transport. SGK1 and the two isoforms SGK2 and SGK3 are stimulated by insulin and insulin-like growth factor-1 (IGF-1), which have been shown to enhance Na(+)/K(+)-ATPase activity in a variety of cells. The present experiments have been performed to elucidate whether or not wild-type SGK1, SGK2 and SGK3 are similar to (S422D)SGK1 in being effective regulators of Na(+)/K(+)-ATPase. To this end, dual-electrode voltage clamp experiments were performed in Xenopus oocytes injected either with water or with mRNA of constitutively active (S422D)SGK1 and wild-type SGK1, SGK2 or SGK3. Na(+)/K(+)-ATPase activity was estimated from the outward-directed current created by readdition of extracellular K(+) in the presence of K(+) channel blocker Ba(2+) following a 10-min exposure to K(+)-free extracellular fluid. The outward-directed current was fully abolished by incubation with 1 mM ouabain and was significantly larger in oocytes expressing (S422D)SGK1, SGK1, SGK2 or SGK3, as compared to those injected with water. The stimulating effect of SGK1 on the Xenopus oocyte Na(+)/K(+)-ATPase is mimicked by the isoforms SGK2 and SGK3. Thus, all three kinases may participate in the regulation of Na(+)/K(+)-ATPase activity by hormones such as insulin and IGF-1.
    Transgenic mice targeted for the c-ros gene, which are fertile when heterozygous (HET), but infertile when homozygous (knockout, KO) and associated with failure in pubertal differentiation of the epididymal initial segment, provide a... more
    Transgenic mice targeted for the c-ros gene, which are fertile when heterozygous (HET), but infertile when homozygous (knockout, KO) and associated with failure in pubertal differentiation of the epididymal initial segment, provide a model for studying the role of the epididymal luminal environment in sperm development. Luminal fluid from the cauda epididymidis was measured by both ion-selective microelectrodes and pH strips to be 0.3 pH units higher in the KO than HET. Of the genes responsible for luminal acidification, expression of mRNA of vacuolar H+-ATPase was found in all epididymal regions, but with no difference between KO and HET. Immunohistochemistry showed its presence in epithelial apical cells and clear cells. The Na+–hydrogen exchanger NHE2 was expressed at mRNA and protein levels in the caput but only marginally detectable if at all in the distal epididymis. This was compensated for by NHE3 which was expressed strongest in the cauda region, in agreement with immunohistochemical staining. Quantification of Western blot data revealed slight, but significant, decreases of NHE2 in the caput and of NHE3 in the cauda in the KO mice. The increase in luminal fluid pH in the KO mice could also be contributed to by other epithelial regulating factors including the Na+-dependent glutamate transporter EAAC1 formerly reported to be down regulated in the KO. Mol. Reprod. Dev. 68: 159–168, 2004. © 2004 Wiley-Liss, Inc.
    rBAT, together with its subunit b(0,+) AT mediates the hetero- and homoexchange of neutral and dibasic amino acids. Since the heteroexchange of dibasic amino acids against neutral amino acids is coupled to net transport of positive... more
    rBAT, together with its subunit b(0,+) AT mediates the hetero- and homoexchange of neutral and dibasic amino acids. Since the heteroexchange of dibasic amino acids against neutral amino acids is coupled to net transport of positive charge, this transport is electrogenic. Extracellular addition of histidine could create an inward or an outward current depending on extracellular pH (pH(e)) and cell membrane potential. It has been concluded that histidine may be transported in both its protonated and its neutral form. In this study measurements of cytosolic pH (pH(i)) were performed to test this hypothesis. As a result, addition of protonated histidine at acidic pH(e) to Xenopus oocytes expressing rBAT creates an inward current which is paralleled by cytosolic acidification. Both can be reduced by increase of pH(e). At alkaline pH(e) and simultaneous depolarization of the cell membrane the effect of histidine on pH(i) is virtually abolished. The neutral amino acid leucine does not alter cytosolic pH at neither pH 6.0 nor at pH 8.0. In conclusion, histidine can be transported in either its neutral or its protonated form. Transport of the protonated form is facilitated by extracellular acidification and hyperpolarization of the cell membrane.