In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey br... more In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subt...
There have been at least ten distinct outbreaks of LPAI or HPAI in poultry caused by H5 or H7 vir... more There have been at least ten distinct outbreaks of LPAI or HPAI in poultry caused by H5 or H7 viruses in the last eight years in Europe and the Middle East. There appears to be an increased occurrence of such episodes consistent with global trends. As a result, surveillance systems have been enhanced to facilitate early detection of infection in poultry, together with active surveillance of wild bird populations. These complementary activities have resulted in the detection of a number of viruses in wild bird populations, including some with high genetic similarity to newly detected viruses in poultry, for example, H7N3 in Italy and H7N7 in the Netherlands. Furthermore, there is evidence for continued circulation of H5 and H7 viruses in wild Anseriformes, thereby presenting a real and current threat for the introduction of viruses to domestic poultry, especially those reared in outdoor production systems. Viruses of H9N2 subtype continue to circulate widely in the Middle East and ar...
Two highly pathogenic avian influenza (HPAI) virus clones that met the criteria for high-pathogen... more Two highly pathogenic avian influenza (HPAI) virus clones that met the criteria for high-pathogenicity avian influenza viruses, by possessing a multibasic hemagglutinin (HA) cleavage site, were isolated from an H5N1 outbreak in Norfolk, England, in 1991-92. These two isolates, A/turkey/England/50-92/91 (50-92) and A/turkey/England/87-92/91 (87-92), displayed differences in virulence as determined by intravenous pathogenicity index-3 and -0, respectively. DNA sequencing of these two isolates identified 10 amino acid differences throughout the genome: three in HA and polymerase B2 (PB2) and two in polymerase B1 (PB1) and single mutations in nucleoprotein (NP) and polymerase A (PA). Serial intracerebral passages were performed in 1- or 2-day-old specific pathogen free (SPF) chicks with 87-92. Viruses reisolated from each bird passage displayed increases in intracerebral pathogenicity index values (from 0 to 1.9) and therefore virulence. Reverse transcriptase polymerase chain reaction a...
Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homolo... more Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread.
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important question... more The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of th... more In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
... The second case, in April 2006, involved a dead whooper swan (Cygnus cygnus) found ... The is... more ... The second case, in April 2006, involved a dead whooper swan (Cygnus cygnus) found ... The isolated virus was identified as H5N1 subtype using conventional techniques (Alexander and Spackman ... subjected to an intra-venous pathogenicity index test (CEC 2006a, b), in which ...
Go to AGRIS search. Lancet (1996). Avian influenza virus isolated from a woman with conjunctiviti... more Go to AGRIS search. Lancet (1996). Avian influenza virus isolated from a woman with conjunctivitis. ...
The study used a total of 45 3-week-old turkeys: each bird in three groups of 10 was challenged w... more The study used a total of 45 3-week-old turkeys: each bird in three groups of 10 was challenged with 0.1 ml of virus containing either 10 3.6 , 10 4.4 , or 10 6 50% egg infective doses of A/California/07/09v, administered equally between the intranasal and intraocular routes. ...
While the majority of avian influenza virus (AIV) subtypes are classified as low-pathogenicity av... more While the majority of avian influenza virus (AIV) subtypes are classified as low-pathogenicity avian influenza viruses (LPAIV), the H5 and H7 subtypes have the ability to mutate to highly pathogenic avian influenza viruses (HPAIV) in poultry and therefore are the etiological agents of notifiable AIV (NAIV). It is of great importance to distinguish HPAIV from LPAIV variants during H5/H7 outbreaks and surveillance. To this end, a novel and fast strategy for the molecular pathotyping of H5/H7 AIVs is presented. The differentiation of the characteristic hemagglutinin (HA) protein cleavage sites (CSs) of HPAIVs and LPAIVs is achieved by a novel PCR method where the samples are interrogated for all existing CSs with a 484-plex primer mixture directly targeting the CS region. CSs characteristic for HP or LP H5/H7 viruses are distinguished in a seminested duplex real-time PCR format using plexor fluorogenic primers. Eighty-six laboratory isolates and 60 characterized NAIV-positive clinical specimens from poultry infected with H5/H7 both experimentally and in the field were successfully pathotyped in the validation. The method has the potential to substitute CS sequencing in the HA gene for the determination of the molecular pathotype, thereby providing a rapid means to acquire additional information concerning NAIV outbreaks, which may be critical to their management. The new assay may be extended to the LP/HP differentiation of previously unknown H5/H7 isolates. It may be considered for integration into surveillance and control programs in both domestic and wild bird populations.
In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey br... more In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subt...
There have been at least ten distinct outbreaks of LPAI or HPAI in poultry caused by H5 or H7 vir... more There have been at least ten distinct outbreaks of LPAI or HPAI in poultry caused by H5 or H7 viruses in the last eight years in Europe and the Middle East. There appears to be an increased occurrence of such episodes consistent with global trends. As a result, surveillance systems have been enhanced to facilitate early detection of infection in poultry, together with active surveillance of wild bird populations. These complementary activities have resulted in the detection of a number of viruses in wild bird populations, including some with high genetic similarity to newly detected viruses in poultry, for example, H7N3 in Italy and H7N7 in the Netherlands. Furthermore, there is evidence for continued circulation of H5 and H7 viruses in wild Anseriformes, thereby presenting a real and current threat for the introduction of viruses to domestic poultry, especially those reared in outdoor production systems. Viruses of H9N2 subtype continue to circulate widely in the Middle East and ar...
Two highly pathogenic avian influenza (HPAI) virus clones that met the criteria for high-pathogen... more Two highly pathogenic avian influenza (HPAI) virus clones that met the criteria for high-pathogenicity avian influenza viruses, by possessing a multibasic hemagglutinin (HA) cleavage site, were isolated from an H5N1 outbreak in Norfolk, England, in 1991-92. These two isolates, A/turkey/England/50-92/91 (50-92) and A/turkey/England/87-92/91 (87-92), displayed differences in virulence as determined by intravenous pathogenicity index-3 and -0, respectively. DNA sequencing of these two isolates identified 10 amino acid differences throughout the genome: three in HA and polymerase B2 (PB2) and two in polymerase B1 (PB1) and single mutations in nucleoprotein (NP) and polymerase A (PA). Serial intracerebral passages were performed in 1- or 2-day-old specific pathogen free (SPF) chicks with 87-92. Viruses reisolated from each bird passage displayed increases in intracerebral pathogenicity index values (from 0 to 1.9) and therefore virulence. Reverse transcriptase polymerase chain reaction a...
Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homolo... more Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread.
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important question... more The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of th... more In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
... The second case, in April 2006, involved a dead whooper swan (Cygnus cygnus) found ... The is... more ... The second case, in April 2006, involved a dead whooper swan (Cygnus cygnus) found ... The isolated virus was identified as H5N1 subtype using conventional techniques (Alexander and Spackman ... subjected to an intra-venous pathogenicity index test (CEC 2006a, b), in which ...
Go to AGRIS search. Lancet (1996). Avian influenza virus isolated from a woman with conjunctiviti... more Go to AGRIS search. Lancet (1996). Avian influenza virus isolated from a woman with conjunctivitis. ...
The study used a total of 45 3-week-old turkeys: each bird in three groups of 10 was challenged w... more The study used a total of 45 3-week-old turkeys: each bird in three groups of 10 was challenged with 0.1 ml of virus containing either 10 3.6 , 10 4.4 , or 10 6 50% egg infective doses of A/California/07/09v, administered equally between the intranasal and intraocular routes. ...
While the majority of avian influenza virus (AIV) subtypes are classified as low-pathogenicity av... more While the majority of avian influenza virus (AIV) subtypes are classified as low-pathogenicity avian influenza viruses (LPAIV), the H5 and H7 subtypes have the ability to mutate to highly pathogenic avian influenza viruses (HPAIV) in poultry and therefore are the etiological agents of notifiable AIV (NAIV). It is of great importance to distinguish HPAIV from LPAIV variants during H5/H7 outbreaks and surveillance. To this end, a novel and fast strategy for the molecular pathotyping of H5/H7 AIVs is presented. The differentiation of the characteristic hemagglutinin (HA) protein cleavage sites (CSs) of HPAIVs and LPAIVs is achieved by a novel PCR method where the samples are interrogated for all existing CSs with a 484-plex primer mixture directly targeting the CS region. CSs characteristic for HP or LP H5/H7 viruses are distinguished in a seminested duplex real-time PCR format using plexor fluorogenic primers. Eighty-six laboratory isolates and 60 characterized NAIV-positive clinical specimens from poultry infected with H5/H7 both experimentally and in the field were successfully pathotyped in the validation. The method has the potential to substitute CS sequencing in the HA gene for the determination of the molecular pathotype, thereby providing a rapid means to acquire additional information concerning NAIV outbreaks, which may be critical to their management. The new assay may be extended to the LP/HP differentiation of previously unknown H5/H7 isolates. It may be considered for integration into surveillance and control programs in both domestic and wild bird populations.
Uploads
Papers by Jill Banks