Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Mark Spear

    Mark Spear

    Recent studies have suggested that a functional cure for HIV-1 infection, purportedly resultant from allogeneic bone marrow transplantation, may be possible. Additionally, the first such patient was treated with whole-body irradiation,... more
    Recent studies have suggested that a functional cure for HIV-1 infection, purportedly resultant from allogeneic bone marrow transplantation, may be possible. Additionally, the first such patient was treated with whole-body irradiation, immunosuppressants, and the chemotherapeutic, cytarabine. However, the precise role of the coinciding medical interventions in diminishing detectable HIV reservoirs remains unstudied. In this article, we demonstrate that the immunosuppressants, mycophenolic acid and cyclosporine, and the chemotherapeutic, cytarabine, are potent antiretroviral agents at clinically relevant dosages. These drugs strongly inhibit HIV-1 replication in a GFP indicator T cell line and peripheral blood mononuclear cells (PBMC). Our study suggests that certain clinical immunosuppressants and chemotherapeutic agents may act combinatorially to inhibit HIV infection. Additionally, chemotherapy-mediated cytotoxicity may also affect the stability of viral reservoirs. Thus, further ...
    HIV fusion and entry into CD4 T cells are mediated by two receptors, CD4 and CXCR4. This receptor requirement can be abrogated by pseudotyping the virion with the vesicular stomatitis virus glycoprotein (VSV-G) that mediates viral entry... more
    HIV fusion and entry into CD4 T cells are mediated by two receptors, CD4 and CXCR4. This receptor requirement can be abrogated by pseudotyping the virion with the vesicular stomatitis virus glycoprotein (VSV-G) that mediates viral entry through endocytosis. The VSV-G-pseudotyped HIV is highly infectious for transformed cells, although the virus circumvents the viral receptors and the actin cortex. In HIV infection, gp120 binding to the receptors also transduces signals. Recently, we demonstrated a unique requirement for CXCR4 signaling in HIV latent infection of blood resting CD4 T cells. Thus, we performed parallel studies in which the VSV-G-pseudotyped HIV was used to infect both transformed and resting T cells in the absence of coreceptor signaling. Our results indicate that in transformed T cells, the VSV-G-pseudotyping results in lower viral DNA synthesis but a higher rate of nuclear migration. However, in resting CD4 T cells, only the HIV envelope-mediated entry, but not the V...
    LIM KINASE 1 MODULATES CORTICAL ACTIN AND CXCR4 CYCLING AND IS ACTIVATED BY HIV-1 TO INITIATE VIRAL INFECTION* Paul J. Vorster, Jia Guo, Alyson Yoder, Weifeng Wang, Yanfang Zheng Xuehua Xu, Dongyang Yu, Mark Spear, and Yuntao Wu*... more
    LIM KINASE 1 MODULATES CORTICAL ACTIN AND CXCR4 CYCLING AND IS ACTIVATED BY HIV-1 TO INITIATE VIRAL INFECTION* Paul J. Vorster, Jia Guo, Alyson Yoder, Weifeng Wang, Yanfang Zheng Xuehua Xu, Dongyang Yu, Mark Spear, and Yuntao Wu* Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110. Department of Oncology, Georgetown University School of Medicine, Washington DC. Running head: LIMK regulates HIV infection § Both authors made equal contributes towards the completion of these studies. Address correspondence to: Yuntao Wu, Ph.D, 10900 University Blvd, Manassas, VA 20110. Tel: 703993-4288; Fax: 703-993-4288; E-mail: ywu8@gmu.edu
    A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which... more
    A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex viru...
    A functional HIV cure requires immune reconstitution for lasting viremia control. A major immune dysfunction persisting in HIV infection is the impairment of T helper cell migration and homing to lymphoid tissues such as GALTs... more
    A functional HIV cure requires immune reconstitution for lasting viremia control. A major immune dysfunction persisting in HIV infection is the impairment of T helper cell migration and homing to lymphoid tissues such as GALTs (gut-associated lymphoid tissues). ART (antiretroviral therapy) does not fully restore T cell motility for tissue repopulation. The molecular mechanism dictating this persistent T cell dysfunction is not understood. Cofilin is an actin-depolymerizing factor that regulates actin dynamics for T cell migration. Here, we demonstrate that blood CD4 T cells from HIV-infected patients (n = 193), with or without ART, exhibit significantly lower levels of cofilin phosphorylation (hyperactivation) than those from healthy controls (n = 100; ratio, 1.1:2.3; P < 0.001); cofilin hyperactivation is also associated with poor CD4 T cell recovery following ART. These results suggest an HIV-mediated systemic dysregulation of T cell motility that cannot be repaired solely by A...
    A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity through hijacking chemokine coreceptor signaling which... more
    A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity through hijacking chemokine coreceptor signaling which activates a host dependency factor cofilin and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIMK1 with shRNA inhibits HIV infection, no specific small molecule inhibitor of LIMK was available. Here we describe the design and discovery of novel classes of small molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK kinase activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses including EBOV, RVFV, VEEV, and HSV-1, suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum anti-viral drugs.IMPORTANCE The actin cytoskeleton i...
    As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for... more
    As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efficacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Specifically, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surfing, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, f...
    The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has... more
    The human immunodeficiency virus-1 (HIV-1) infects helper CD4(+) T cells, and causes CD4(+) T-cell depletion and immunodeficiency. In the past 30 years, significant progress has been made in antiretroviral therapy, and the disease has become manageable. Nevertheless, an effective vaccine is still nowhere in sight, and a cure or a functional cure awaits discovery. Among possible curative therapies, traditional antiretroviral therapy, mostly targeting viral proteins, has been proven ineffective. It is possible that targeting HIV-dependent host cofactors may offer alternatives, both for preventing HIV transmission and for forestalling disease progression. Recently, the actin cytoskeleton and its regulators in blood CD4(+) T cells have emerged as major host cofactors that could be targeted. The novel concept that the cortical actin is a barrier to viral entry and early post-entry migration has led to the nascent model of virus-host interaction at the cortical actin layer. Deciphering th...
    For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this... more
    For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard, the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly, in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this review to examine, in detail, the manifestation of viral d...
    Persistence of human immunodeficiency virus (HIV) despite highly active antiretroviral therapy (HAART) is a lasting challenge to virus eradication. To develop a strategy complementary to HAART, we constructed a series of Rev-dependent... more
    Persistence of human immunodeficiency virus (HIV) despite highly active antiretroviral therapy (HAART) is a lasting challenge to virus eradication. To develop a strategy complementary to HAART, we constructed a series of Rev-dependent lentiviral vectors carrying diphtheria ...