Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Nadia Anikeeva

    A human interleukin-2 (IL-2) gene was isolated from genomic DNA library. The isolated gene with 5'- and 3'-flanking sequences of various lengths was inserted into plasmids derived from the retroviral vector pPSneo. The recombinant... more
    A human interleukin-2 (IL-2) gene was isolated from genomic DNA library. The isolated gene with 5'- and 3'-flanking sequences of various lengths was inserted into plasmids derived from the retroviral vector pPSneo. The recombinant plasmids were transfected into myeloma X63Ag8-653 cells. The transfected cells, harbouring the IL-2 gene with the shortened (to position -165) or totally deleted 5'-flanking sequence, constitutively expressed biologically active IL-2. Deletion of 3'-flanking region on did not affect the IL-2 expression.
    Integrin engagement on lymphocytes initiates "outside-in"... more
    Integrin engagement on lymphocytes initiates "outside-in" signaling that is required for cytoskeleton remodeling and the formation of the synaptic interface. However, the mechanism by which the "outside-in" signal contributes to receptor-mediated intracellular signaling that regulates the kinetics of granule delivery and efficiency of cytolytic activity is not well understood. We have found that variations in ICAM-1 expression on tumor cells influence killing kinetics of these cells by CD16.NK-92 cytolytic effectors suggesting that changes in integrin ligation on the effector cells regulate the kinetics of cytolytic activity by the effector cells. To understand how variations of the integrin receptor ligation may alter cytolytic activity of CD16.NK-92 cells, we analyzed molecular events at the contact area of these cells exposed to planar lipid bilayers that display integrin ligands at different densities and activating CD16-specific antibodies. Changes in the extent of integrin ligation on CD16.NK-92 cells at the cell/bilayer interface revealed that the integrin signal influences the size and the dynamics of activating receptor microclusters in a Pyk2-dependent manner. Integrin-mediated changes of the intracellular signaling significantly affected the kinetics of degranulation of CD16.NK-92 cells providing evidence that integrins regulate the rate of target cell destruction in antibody dependent cell cytotoxicity (ADCC).
    Cytotoxic T lymphocytes (CTL) can respond to a few viral peptide-MHC-I (pMHC-I) complexes among a myriad of virus-unrelated endogenous self pMHC-I complexes displayed on virus-infected cells. To elucidate the molecular recognition events... more
    Cytotoxic T lymphocytes (CTL) can respond to a few viral peptide-MHC-I (pMHC-I) complexes among a myriad of virus-unrelated endogenous self pMHC-I complexes displayed on virus-infected cells. To elucidate the molecular recognition events on live CTL, we have utilized a self-assembled biosensor composed of semiconductor nanocrystals, quantum dots, carrying a controlled number of virus-derived (cognate) and other (noncognate) pMHC-I complexes and examined their recognition by antigen-specific T cell receptor (TCR) on anti-virus CD8(+) T cells. The unique architecture of nanoscale quantum dot/pMHC-I conjugates revealed that unexpectedly strong multivalent CD8-MHC-I interactions underlie the cooperative contribution of noncognate pMHC-I to the recognition of cognate pMHC-I by TCR to augment T cell responses. The cooperative, CD8-dependent spread of signal from a few productively engaged TCR to many other TCR can explain the remarkable ability of CTL to respond to virus-infected cells th...
    Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecules (ICAMs) facilitates T cell antigen receptor (TCR)-mediated killing. To dissect TCR and LFA-1 contributions, we evaluated cytolytic activity... more
    Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecules (ICAMs) facilitates T cell antigen receptor (TCR)-mediated killing. To dissect TCR and LFA-1 contributions, we evaluated cytolytic activity and granule release by cytotoxic T lymphocytes (CTL) as well as intracellular granule redistribution and morphology of CTL stimulated with natural TCR ligand in the presence or absence of LFA-1 engagement. Although other adhesion mechanisms, e.g., CD2-CD58 interaction, could substitute for LFA-1 to trigger CTL degranulation, productive LFA-1 ligation was indispensable for effective target cell lysis by the released granules. LFA-1-mediated adhesion to glass-supported bilayers containing intercellular adhesion molecule-1 was characterized by a much larger junction area, marked by LFA-1 segregation, and a more compact cell shape compared with those observed for CD2-mediated adhesion to bilayers containing CD58. A larger contact induced by intercellul...
    Antibodies recognizing peptide bound to a major histocompatibility complex (MHC) protein usually have a higher affinity for the composite peptide.MHC (pMHC) ligand than T cell receptors (TCR) with the same specificity. Because the... more
    Antibodies recognizing peptide bound to a major histocompatibility complex (MHC) protein usually have a higher affinity for the composite peptide.MHC (pMHC) ligand than T cell receptors (TCR) with the same specificity. Because the solvent-accessible peptide area constitutes only a small portion of the contacting pMHC surface, we hypothesized that the contribution of the MHC moiety to the TCR-pMHC complex stability is limited, ensuring a small increment of the binding energy delivered by the peptide to be distinguishable by the TCR or the peptide-specific antibody. This suggests that the gain in affinity of the antibody-pMHC interaction can be achieved through an increase in the on-rate without a significant change in the off-rate of the interaction. To test the hypothesis, we have analyzed the binding of an ovalbumin peptide (pOV8) and its variants associated with soluble H-2Kb protein to the 25-D1.16 monoclonal antibody and compared it with the binding of the same pMHC complexes to...
    Research Interests:
    It is well established that even small changes in amino acid side chains of antigenic peptide bound to major histocompatibility complex (MHC) protein may completely abrogate recognition of the peptide-MHC (pMHC) complex by the T cell... more
    It is well established that even small changes in amino acid side chains of antigenic peptide bound to major histocompatibility complex (MHC) protein may completely abrogate recognition of the peptide-MHC (pMHC) complex by the T cell receptor (TCR). Often, however, several nonconservative substitutions in the peptide antigen are accommodated and do not impair its recognition by TCR. For example, a preponderance of natural sequence variants of the human immunodeficiency virus p17 Gag-derived peptide SLYNTVATL (SL9) are recognized by cytotoxic T lymphocytes, which implies that interactions with SL9 variants are degenerate both with respect to the class I MHC molecule and with respect to TCR. Here we study the molecular basis for this degenerate recognition of SL9 variants. We show that several SL9 variants bind comparably well to soluble HLA-A2 and to a particular soluble TCR and that these variants are active in the cognate cytotoxicity assay. Natural SL9 variation is restricted by its context in the HIV p17 matrix protein. High resolution crystal structures of seven selected SL9 variants bound to HLA-A2 all have remarkably similar peptide conformations and side-chain dispositions outside sites of substitution. This preservation of the peptide conformation despite epitope variations suggests a mechanism for the observed degeneracy in pMHC recognition by TCR and may contribute to the persistence of SL9-mediated immune responses in chronically infected individuals.
    Pyropheophorbide a (Pyro) is a near-infrared (NIR) fluorescent dye and photosensitizer with high quantum yield that makes the dye suitable for tumor treatment both as an imaging and therapy agent. We have designed and synthesized a series... more
    Pyropheophorbide a (Pyro) is a near-infrared (NIR) fluorescent dye and photosensitizer with high quantum yield that makes the dye suitable for tumor treatment both as an imaging and therapy agent. We have designed and synthesized a series of a Pyro-based NIR probes, based on the conjugation of Pyro with lipids. The nature of our probes requires the use of a lipophilic carrier to deliver the probes to cancer cell membranes. To address this, we have utilized lipid-based nanoparticles (LNPs) consisting of PEGylated lipids, which form the nanoparticle shell, and a lipid core. To endow the LNPs with targeting properties, nitrilotriacetic acid (NTA) lipids were included in the composition that enables the non-covalent attachment of His-tag targeting proteins preserving their functional activity. We found that the nature of the core molecules influence the nanoparticle size, shelf-life and stability at physiological temperature. Two different Pyro-lipid conjugates were loaded either into t...