Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
P. Singh, I

    P. Singh, I

    A B S T R A C T Lignocellulosic crop residue biomass, in surplus, is of vital importance due to its multifaceted utilization potential on-and off-site to agricultural systems; therefore, its management is essential for sustainable... more
    A B S T R A C T Lignocellulosic crop residue biomass, in surplus, is of vital importance due to its multifaceted utilization potential on-and off-site to agricultural systems; therefore, its management is essential for sustainable agriculture. The malpractice of open crop residue burning leading to the brown cloud phenomenon and contributing significantly to atmospheric heterogeneity through enhanced gaseous and particulate emissions is of greater off-late concern. Available traditional crop residue management (CRM) technologies have not achieved wider adaptation; therefore, recently thermochemical conversion has been foreseen as an interesting tool for potential CRM under changing climate scenario. Biochar, a by-product of thermochemical processes, has been evaluated as a potential soil ameliorant and C sequestration agent. As soil ameliorant, it improves soil basic properties directly along with subdued release of greenhouse gases from agroecosystems, provides adsorption surface to agrochemicals and improves essential nutrient dynamics. Since the potential benefits of biochar in soil are governed by initial pyrolysis conditions and soil types; therefore, its wider utilization potential as suitable tool in sustainable agriculture and climate change mitigation needs to be critically analyzed before its specific recommendation to an agroecosystem. The present review provides a critical insight on current research on various aspects, particularly ecological, of crop residue biochar starting from the feedstock sources, pyrolysis conditions and changes after application. Additionally, a brief account is given on the agronomic relevance and major constraints of biochar amendment as an ecological engineering tool for sustainable agriculture. After reviewing various aspects of crop residue as feedstock, we recommend its use as a blend, rather than sole use, along with several other lignocellulosic materials under pyrolysis process as well as ameliorating agent.
    Research Interests:
    Production of biofuels using second-generation, non-food, lignocellulosic waste biomass is a sustainable approach that solve the economic issues of fossil fuels and environmental pollution. The major issues of biofuel production are... more
    Production of biofuels using second-generation, non-food, lignocellulosic waste biomass is a sustainable approach that solve the economic issues of fossil fuels and environmental pollution. The major issues of biofuel production are biomass complexity, pretreatment, enzyme denaturation and cost. This article reviews the application of nanomaterials for biofuel production from various lig-nocellulosic wastes.
    Research Interests:
    Multivariate statistical techniques were employed for monitoring of ground-surface water interactions in rivers. The river Varuna is situated in the Indo-Gangetic plain and is a small tributary of river Ganga. The study area was monitored... more
    Multivariate statistical techniques were employed for monitoring of ground-surface water interactions in rivers. The river Varuna is situated in the Indo-Gangetic plain and is a small tributary of river Ganga. The study area was monitored at seven sampling sites for 3 years (2010–12), and eight physio-chemical parameters were taken into account for this study. The data obtained were analysed by multivariate statistical techniques so as to reveal the underlying implicit information regarding proposed interactions for the relevant area. The principal component analysis (PCA) and cluster analysis (CA), and the results of correlations were also studied for all parameters monitored at every site. Methods used in this study are essentially multivariate statistical in nature and facilitate the interpretation of data so as to extract meaningful information from the datasets. The PCA technique was able to compress the data from eight to three parameters and captured about 78.5 % of the total variance by performing varimax rotation over the principal components. The varifactors, as yielded from PCA, were treated by CA which grouped them convincingly into three groups having similar characteristics and source of contamination. Moreover, the loading of variables on significant PCs showed correlations between various ground water and surface water (GW-SW) parameters. The correlation coefficients calculated for various physiochemical parameters for ground and surface water established the correlations between them. Thus, this study presents the utility of multivariate statistical techniques for evaluation of the proposed interactions and effective future monitoring of potential sites.
    Research Interests:
    Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and... more
    Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO 2 , ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO 2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the Bzero concept^ of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are more efficient in pilot scale for the demineral-ization of pollutant.
    Research Interests:
    In the present study, activated carbon-based TiO2 nanocomposites with carbon loading were synthesized by sol–gel method for photocatalytic, sonocatalytic, and sonophotocatalytic degradation of colored compound in wastewater. The prepared... more
    In the present study, activated carbon-based TiO2 nanocomposites with carbon loading
    were synthesized by sol–gel method for photocatalytic, sonocatalytic, and sonophotocatalytic
    degradation of colored compound in wastewater. The prepared catalysts were characterized
    by Brunauer–Emmet–Teller surface area analysis, X-ray diffraction (XRD),
    scanning electron microscopy (SEM), and Fourier transform infrared analysis (FT-IR). The
    degradation efficiencies of the synthesized composites were determined by the degradation
    of Direct Blue-199 dye under three different reactors viz., photocatalytic, sonocatalytic, and
    sonophotocatalytic. Reaction kinetic modeling was done for these processes and the degradation
    rate was found maximum for sonophotocatalytic process as compared to individual
    ones. However, on considering the energy efficiency and degradation efficiency, photochemical
    reactor was found to be most economical. Therefore, for the treatment of wastewater-
    containing dye from industries, a photocatalytic process can be applied with further
    modification.
    Research Interests:
    Research Interests: