Proceedings of the National Academy of Sciences, 2005
Epidemic respiratory infections are responsible for extensive morbidity and mortality within both... more Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample. High-resolution genotyping of specific species is achieved by using additional primers targeted to highly variable regions of specific bacterial genomes. This method was used to examine samples taken from military recruits during respiratory disease outbreaks and for follow up surveillance at several military training facilities. Analysis of respiratory samples revealed high concentrations of pathogenic respiratory species, including Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pyogenes. When S. pyogenes was identified in samples from the epidemic site, the identical genotype was found in almost all recruits. This analysis method will provide information fundamental to understanding the polymicrobial nature of explosive epidemics of respiratory disease.
PCR coupled with electrospray ionization mass spectrometry (ESI-MS) is a diagnostic approach that... more PCR coupled with electrospray ionization mass spectrometry (ESI-MS) is a diagnostic approach that has demonstrated the capacity to detect pathogenic organisms from culture negative clinical samples after antibiotic treatment has been initiated. [1] We describe the application of PCR/ESI-MS for detection of bacteria in original patient specimens that were obtained after administration of antibiotic treatment in an open investigation analysis. We prospectively identified cases of suspected bacterial infection in which cultures were not obtained until after the initiation of antimicrobial treatment. PCR/ESI-MS was performed on 76 clinical specimens that were submitted for conventional microbiology testing from 47 patients receiving antimicrobial treatment. In our series, 72% (55/76) of cultures obtained following initiation of antimicrobial treatment were non-diagnostic (45 negative cultures; and 10 respiratory specimens with normal flora (5), yeast (4), or coagulase-negative staphylococcus (1)). PCR/ESR-MS detected organisms in 83% (39/47) of cases and 76% (58/76) of the specimens. Bacterial pathogens were detected by PCR/ESI-MS in 60% (27/45) of the specimens in which cultures were negative. Notably, in two cases of relapse of prosthetic knee infections in patients on chronic suppressive antibiotics, the previous organism was not recovered in tissue cultures taken during extraction of the infected knee prostheses, but was detected by PCR/ESI-MS. Molecular methods that rely on nucleic acid amplification may offer a unique advantage in the detection of pathogens collected after initiation of antimicrobial treatment and may provide an opportunity to target antimicrobial therapy and "salvage" both individual treatment regimens as well as, in select cases, institutional antimicrobial stewardship efforts.
A new algorithm called RNAMotif containing RNA structure and sequence constraints and a thermodyn... more A new algorithm called RNAMotif containing RNA structure and sequence constraints and a thermodynamic scoring system was used to search for intrinsic rho-independent terminators in the Escherichia coli K-12 genome. We identified all 135 reported terminators and 940 putative terminator sequences beginning no more than 60 nt away from the 3'-end of the annotated transcription units (TU). Putative and reported terminators with the scores above our chosen threshold were found for 37 of the 53 non-coding RNA TU and for almost 50% of the 2592 annotated protein-encoding TU, which correlates well with the number of TU expected to contain rho-independent terminators. We also identified 439 terminators that could function in a bi-directional fashion, servicing one gene on the positive strand and a different gene on the negative strand. Approximately 700 additional termination signals in non-coding regions (NCR) far away from the nearest annotated gene were predicted. This number correlates well with the excess number of predicted 'orphan' promoters in the NCR, and these promoters and terminators may be associated with as yet unidentified TU. The significant number of high scoring hits that occurred within the reading frame of annotated genes suggests that either an additional component of rho-independent terminators exists or that a suppressive mechanism to prevent unwanted termination remains to be discovered.
RNA molecules fold into characteristic secondary and tertiary structures that account for their d... more RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures are assembled from a collection of RNA structural motifs. These basic building blocks are used repeatedly, and in various combinations, to form different RNA types and define their unique structural and functional properties. Identification of recurring RNA structural motifs will therefore enhance our understanding of RNA structure and help associate elements of RNA structure with functional and regulatory elements. Our goal was to develop a computer program that can describe an RNA structural element of any complexity and then search any nucleotide sequence database, including the complete prokaryotic and eukaryotic genomes, for these structural elements. Here we describe in detail a new computational motif search algorithm, RNAMotif, and demonstrate its utility with some motif search examples. RNAMotif differs from other motif search tools in two important aspects: first, the structure definition language is more flexible and can specify any type of base-base interaction; second, RNAMotif provides a user controlled scoring section that can be used to add capabilities that patterns alone cannot provide.
We describe a new technology, the Ibis T5000, for the identification of pathogens in clinical and... more We describe a new technology, the Ibis T5000, for the identification of pathogens in clinical and environmental samples. The Ibis T5000 couples nucleic acid amplification to high-performance electrospray ionization mass spectrometry and base-composition analysis. The system enables the identification and quantification of a broad set of pathogens, including all known bacteria, all major groups of pathogenic fungi and the major families of viruses that cause disease in humans and animals, along with the detection of virulence factors and antibiotic resistance markers.
A PCR assay was developed to genotypically characterize Francisella tularensis and F. novicida. A... more A PCR assay was developed to genotypically characterize Francisella tularensis and F. novicida. An integrated and partially redundant set of markers was selected to provide positive identification of these species, identify subspecies of F. tularensis and genotype 14 variable number tandem repeat (VNTR) markers. Assay performance was evaluated with 117 Francisella samples. Sample DNA was amplified, and the masses of the PCR products were determined with electrospray ionization/time of flight mass spectrometry (ESI-MS). The base compositions of the PCR amplicons were derived from these high-accuracy mass measurements and contrasted with databased information associated with each of the 25 assay markers. Species and subspecies determinations for all samples were fully concordant with results from established typing methods, and VNTR markers provided additional discrimination among samples. Sequence variants were observed with a number of assay markers, but these did not interfere with sample characterization, and served to increase the genetic diversity detected by the assay.
Diagnosis of the etiologic agent of respiratory viral infection relies traditionally on culture o... more Diagnosis of the etiologic agent of respiratory viral infection relies traditionally on culture or antigen detection. This pilot evaluation compared performance characteristics of the RT-PCR and electrospray ionization mass spectrometry (RT-PCR/ESI-MS) platform to conventional virologic methods for identifying multiple clinically relevant respiratory viruses in nasopharyngeal aspirates. The RT-PCR/ESI-MS respiratory virus surveillance kit was designed to detect respiratory syncytial virus, influenza A and B, parainfluenza types 1-4, adenoviridae types A-F, coronaviridae, human bocavirus, and human metapneumovirus. Patients (N=192) attending an emergency department during the 2007-2008 respiratory season consented, and "excess" frozen archived nasopharyngeal aspirates were analysed; 46 were positive by conventional virology and 69 by RT-PCR/ESI-MS, among which there were six samples with multiple viral pathogens detected. The sensitivity and specificity of the assay were 89.1% and 80.3%, respectively. Additional viruses that were not identified by conventional virology assays were detected (4 human bocaviruses and 7 coronaviruses). Samples in which the RT-PCR/ESI-MS results disagreed with conventional virology were sent for analysis by a third method using a commercial RT-PCR-based assay, which can identify viruses not detectable by conventional virologic procedures. Time to first result of RT-PCR/ESI-MS was 8h. RT-PCR/ESI-MS demonstrated capacity to detect respiratory viruses identifiable and unidentifiable by conventional methods rapidly.
A new class of small molecules that bind the HCV RNA IRES IIA subdomain with sub-micromolar affin... more A new class of small molecules that bind the HCV RNA IRES IIA subdomain with sub-micromolar affinity is reported. The benzimidazole 'hit' 1 with a KD approximately 100 microM to a 29-mer RNA model of Domain IIA was identified from a 180000-member library using mass spectrometry-based screening methods. Further MS-assisted SAR (structure-activity relationships) studies afforded benzimidazole derivatives with sub-micromolar binding affinity for the IIA RNA construct. The optimized benzimidazoles demonstrated activity in a cellular replicon assay at concentrations comparable to their KD for the RNA target.
Infectious microorganisms are important to multiple communities engaged in biodefense and biosecu... more Infectious microorganisms are important to multiple communities engaged in biodefense and biosecurity, including the agencies responsible for health, defense, law enforcement, agriculture, and drug and food safety. Many agencies have created lists of high priority infectious microorganisms to prioritize research efforts or to formally control the possession and distribution of specific organisms or toxins. However, the biological classification of infectious microorganisms is often complex and ambiguous, leading to uncertainty and confusion for scientists involved in biosecurity work. To address this problem, we created a database, known as the Microbial Rosetta Stone, which resolves many of these ambiguities and includes links to additional information on the microbes, such as gene sequence data and scientific literature. Here we discuss the efforts to coordinate organism names from pathogen lists from various governmental agencies according to biological relatedness and show the overlap of high-priority organisms from multiple agencies. To our knowledge, this is the first comprehensive coordination of pathogens, synonyms, and correct taxonomic names. The organized tables and visual aids are freely available at http://www.microbialrosettastone.com. This website provides a single location where access to information on a broad range of disease-causing organisms and toxins is available to members of the biosecurity community.
Rapid detection and identification of viruses are important for early diagnosis and effective sur... more Rapid detection and identification of viruses are important for early diagnosis and effective surveillance of hand, foot, and mouth disease (HFMD). We described a novel assay using multilocus PCR and reverse transcription-PCR coupled with electrospray ionization mass spectrometry (RT-PCR/ESI-MS) to simultaneously detect and identify human enterovirus A-D, adenovirus A-F, human herpesvirus 1-8, parvovirus B19 and polyomavirus. To evaluate the accuracy and efficacy of the RT-PCR/ESI-MS method, to detect and type enterovirus from specimens of clinical diagnosed HFMD patients. In this study, 152 specimens of clinically diagnosed HFMD patients were studied by the assay using RT-PCR/ESI-MS method. The detection and typing of enterovirus by RT-PCR/ESI-MS were compared with results from reference molecular methods. The assay detected enteroviruses in 97 (63.8%) specimens, resulting in a sensitivity of 93.8% (95% CI: 91.8-95.7%) and a specificity of 87.5% (95% CI: 84.8-90.2%) compared with a reference clinical diagnostic test. Most enterovirus genotypes (65/84; 77%) determined by the platform were consistent with 5' UTR sequence analysis, and most misidentifications resulted from the virus library, which could be further improved by updating the enterovirus database. In addition to enteroviruses, herpesviruses, polyomaviruses, adenoviruses and human rhinoviruses were detected and identified in 55 (36%) HFMD specimens by RT-PCR/ESI-MS. With the capability of high throughput and detection and typing of multiple clinically relevant viruses simultaneously, RT-PCR/ESI-MS can be a rapid and robust laboratory tool for identifying viral pathogens.
Proceedings of the National Academy of Sciences, 2005
Epidemic respiratory infections are responsible for extensive morbidity and mortality within both... more Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample. High-resolution genotyping of specific species is achieved by using additional primers targeted to highly variable regions of specific bacterial genomes. This method was used to examine samples taken from military recruits during respiratory disease outbreaks and for follow up surveillance at several military training facilities. Analysis of respiratory samples revealed high concentrations of pathogenic respiratory species, including Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pyogenes. When S. pyogenes was identified in samples from the epidemic site, the identical genotype was found in almost all recruits. This analysis method will provide information fundamental to understanding the polymicrobial nature of explosive epidemics of respiratory disease.
PCR coupled with electrospray ionization mass spectrometry (ESI-MS) is a diagnostic approach that... more PCR coupled with electrospray ionization mass spectrometry (ESI-MS) is a diagnostic approach that has demonstrated the capacity to detect pathogenic organisms from culture negative clinical samples after antibiotic treatment has been initiated. [1] We describe the application of PCR/ESI-MS for detection of bacteria in original patient specimens that were obtained after administration of antibiotic treatment in an open investigation analysis. We prospectively identified cases of suspected bacterial infection in which cultures were not obtained until after the initiation of antimicrobial treatment. PCR/ESI-MS was performed on 76 clinical specimens that were submitted for conventional microbiology testing from 47 patients receiving antimicrobial treatment. In our series, 72% (55/76) of cultures obtained following initiation of antimicrobial treatment were non-diagnostic (45 negative cultures; and 10 respiratory specimens with normal flora (5), yeast (4), or coagulase-negative staphylococcus (1)). PCR/ESR-MS detected organisms in 83% (39/47) of cases and 76% (58/76) of the specimens. Bacterial pathogens were detected by PCR/ESI-MS in 60% (27/45) of the specimens in which cultures were negative. Notably, in two cases of relapse of prosthetic knee infections in patients on chronic suppressive antibiotics, the previous organism was not recovered in tissue cultures taken during extraction of the infected knee prostheses, but was detected by PCR/ESI-MS. Molecular methods that rely on nucleic acid amplification may offer a unique advantage in the detection of pathogens collected after initiation of antimicrobial treatment and may provide an opportunity to target antimicrobial therapy and "salvage" both individual treatment regimens as well as, in select cases, institutional antimicrobial stewardship efforts.
A new algorithm called RNAMotif containing RNA structure and sequence constraints and a thermodyn... more A new algorithm called RNAMotif containing RNA structure and sequence constraints and a thermodynamic scoring system was used to search for intrinsic rho-independent terminators in the Escherichia coli K-12 genome. We identified all 135 reported terminators and 940 putative terminator sequences beginning no more than 60 nt away from the 3'-end of the annotated transcription units (TU). Putative and reported terminators with the scores above our chosen threshold were found for 37 of the 53 non-coding RNA TU and for almost 50% of the 2592 annotated protein-encoding TU, which correlates well with the number of TU expected to contain rho-independent terminators. We also identified 439 terminators that could function in a bi-directional fashion, servicing one gene on the positive strand and a different gene on the negative strand. Approximately 700 additional termination signals in non-coding regions (NCR) far away from the nearest annotated gene were predicted. This number correlates well with the excess number of predicted 'orphan' promoters in the NCR, and these promoters and terminators may be associated with as yet unidentified TU. The significant number of high scoring hits that occurred within the reading frame of annotated genes suggests that either an additional component of rho-independent terminators exists or that a suppressive mechanism to prevent unwanted termination remains to be discovered.
RNA molecules fold into characteristic secondary and tertiary structures that account for their d... more RNA molecules fold into characteristic secondary and tertiary structures that account for their diverse functional activities. Many of these RNA structures are assembled from a collection of RNA structural motifs. These basic building blocks are used repeatedly, and in various combinations, to form different RNA types and define their unique structural and functional properties. Identification of recurring RNA structural motifs will therefore enhance our understanding of RNA structure and help associate elements of RNA structure with functional and regulatory elements. Our goal was to develop a computer program that can describe an RNA structural element of any complexity and then search any nucleotide sequence database, including the complete prokaryotic and eukaryotic genomes, for these structural elements. Here we describe in detail a new computational motif search algorithm, RNAMotif, and demonstrate its utility with some motif search examples. RNAMotif differs from other motif search tools in two important aspects: first, the structure definition language is more flexible and can specify any type of base-base interaction; second, RNAMotif provides a user controlled scoring section that can be used to add capabilities that patterns alone cannot provide.
We describe a new technology, the Ibis T5000, for the identification of pathogens in clinical and... more We describe a new technology, the Ibis T5000, for the identification of pathogens in clinical and environmental samples. The Ibis T5000 couples nucleic acid amplification to high-performance electrospray ionization mass spectrometry and base-composition analysis. The system enables the identification and quantification of a broad set of pathogens, including all known bacteria, all major groups of pathogenic fungi and the major families of viruses that cause disease in humans and animals, along with the detection of virulence factors and antibiotic resistance markers.
A PCR assay was developed to genotypically characterize Francisella tularensis and F. novicida. A... more A PCR assay was developed to genotypically characterize Francisella tularensis and F. novicida. An integrated and partially redundant set of markers was selected to provide positive identification of these species, identify subspecies of F. tularensis and genotype 14 variable number tandem repeat (VNTR) markers. Assay performance was evaluated with 117 Francisella samples. Sample DNA was amplified, and the masses of the PCR products were determined with electrospray ionization/time of flight mass spectrometry (ESI-MS). The base compositions of the PCR amplicons were derived from these high-accuracy mass measurements and contrasted with databased information associated with each of the 25 assay markers. Species and subspecies determinations for all samples were fully concordant with results from established typing methods, and VNTR markers provided additional discrimination among samples. Sequence variants were observed with a number of assay markers, but these did not interfere with sample characterization, and served to increase the genetic diversity detected by the assay.
Diagnosis of the etiologic agent of respiratory viral infection relies traditionally on culture o... more Diagnosis of the etiologic agent of respiratory viral infection relies traditionally on culture or antigen detection. This pilot evaluation compared performance characteristics of the RT-PCR and electrospray ionization mass spectrometry (RT-PCR/ESI-MS) platform to conventional virologic methods for identifying multiple clinically relevant respiratory viruses in nasopharyngeal aspirates. The RT-PCR/ESI-MS respiratory virus surveillance kit was designed to detect respiratory syncytial virus, influenza A and B, parainfluenza types 1-4, adenoviridae types A-F, coronaviridae, human bocavirus, and human metapneumovirus. Patients (N=192) attending an emergency department during the 2007-2008 respiratory season consented, and "excess" frozen archived nasopharyngeal aspirates were analysed; 46 were positive by conventional virology and 69 by RT-PCR/ESI-MS, among which there were six samples with multiple viral pathogens detected. The sensitivity and specificity of the assay were 89.1% and 80.3%, respectively. Additional viruses that were not identified by conventional virology assays were detected (4 human bocaviruses and 7 coronaviruses). Samples in which the RT-PCR/ESI-MS results disagreed with conventional virology were sent for analysis by a third method using a commercial RT-PCR-based assay, which can identify viruses not detectable by conventional virologic procedures. Time to first result of RT-PCR/ESI-MS was 8h. RT-PCR/ESI-MS demonstrated capacity to detect respiratory viruses identifiable and unidentifiable by conventional methods rapidly.
A new class of small molecules that bind the HCV RNA IRES IIA subdomain with sub-micromolar affin... more A new class of small molecules that bind the HCV RNA IRES IIA subdomain with sub-micromolar affinity is reported. The benzimidazole 'hit' 1 with a KD approximately 100 microM to a 29-mer RNA model of Domain IIA was identified from a 180000-member library using mass spectrometry-based screening methods. Further MS-assisted SAR (structure-activity relationships) studies afforded benzimidazole derivatives with sub-micromolar binding affinity for the IIA RNA construct. The optimized benzimidazoles demonstrated activity in a cellular replicon assay at concentrations comparable to their KD for the RNA target.
Infectious microorganisms are important to multiple communities engaged in biodefense and biosecu... more Infectious microorganisms are important to multiple communities engaged in biodefense and biosecurity, including the agencies responsible for health, defense, law enforcement, agriculture, and drug and food safety. Many agencies have created lists of high priority infectious microorganisms to prioritize research efforts or to formally control the possession and distribution of specific organisms or toxins. However, the biological classification of infectious microorganisms is often complex and ambiguous, leading to uncertainty and confusion for scientists involved in biosecurity work. To address this problem, we created a database, known as the Microbial Rosetta Stone, which resolves many of these ambiguities and includes links to additional information on the microbes, such as gene sequence data and scientific literature. Here we discuss the efforts to coordinate organism names from pathogen lists from various governmental agencies according to biological relatedness and show the overlap of high-priority organisms from multiple agencies. To our knowledge, this is the first comprehensive coordination of pathogens, synonyms, and correct taxonomic names. The organized tables and visual aids are freely available at http://www.microbialrosettastone.com. This website provides a single location where access to information on a broad range of disease-causing organisms and toxins is available to members of the biosecurity community.
Rapid detection and identification of viruses are important for early diagnosis and effective sur... more Rapid detection and identification of viruses are important for early diagnosis and effective surveillance of hand, foot, and mouth disease (HFMD). We described a novel assay using multilocus PCR and reverse transcription-PCR coupled with electrospray ionization mass spectrometry (RT-PCR/ESI-MS) to simultaneously detect and identify human enterovirus A-D, adenovirus A-F, human herpesvirus 1-8, parvovirus B19 and polyomavirus. To evaluate the accuracy and efficacy of the RT-PCR/ESI-MS method, to detect and type enterovirus from specimens of clinical diagnosed HFMD patients. In this study, 152 specimens of clinically diagnosed HFMD patients were studied by the assay using RT-PCR/ESI-MS method. The detection and typing of enterovirus by RT-PCR/ESI-MS were compared with results from reference molecular methods. The assay detected enteroviruses in 97 (63.8%) specimens, resulting in a sensitivity of 93.8% (95% CI: 91.8-95.7%) and a specificity of 87.5% (95% CI: 84.8-90.2%) compared with a reference clinical diagnostic test. Most enterovirus genotypes (65/84; 77%) determined by the platform were consistent with 5' UTR sequence analysis, and most misidentifications resulted from the virus library, which could be further improved by updating the enterovirus database. In addition to enteroviruses, herpesviruses, polyomaviruses, adenoviruses and human rhinoviruses were detected and identified in 55 (36%) HFMD specimens by RT-PCR/ESI-MS. With the capability of high throughput and detection and typing of multiple clinically relevant viruses simultaneously, RT-PCR/ESI-MS can be a rapid and robust laboratory tool for identifying viral pathogens.
Uploads
Papers by Rangarajan Sampath