Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Riddhi Datta

    The evolutionary origin of fungi is important in determining the phylogenetic relationships between fungi, animals and plants. However, determining the true relationship of fungi has been somewhat difficult owing to their simple... more
    The evolutionary origin of fungi is important in determining the phylogenetic relationships between fungi, animals and plants. However, determining the true relationship of fungi has been somewhat difficult owing to their simple morphology and presence of convergent characters. With the advent of newer molecular techniques, analysis of conserved protein sequences, cytochrome systems, mitochondrial and nuclear genetic material and rRNAs are being employed in elucidating phylogenetic kinships among the eukaryotes. These emerging evidences suggest that the derivation of the fungi from plants or algae would require more evolutionary changes than its derivation from protozoa, the unicellular ancestor of the animals. To gain an overview of the current state of the science, we have extensively reviewed the existing literatures and it appeared to us that fungi are more closely related to animals than to plants.
    The involvement of glutathione (GSH) in plant defense against pathogen invasion is an established fact. However, the molecular mechanism conferring this tolerance remains to be explored. Here, proteomic analysis of pad2-1, an Arabidopsis... more
    The involvement of glutathione (GSH) in plant defense against pathogen invasion is an established fact. However, the molecular mechanism conferring this tolerance remains to be explored. Here, proteomic analysis of pad2-1, an Arabidopsis thaliana GSH-depleted mutant, in response to Pseudomonas syringae infection has been performed to explore the intricate position of GSH in defense against biotrophic pathogens. The pad2-1 mutant displayed severe susceptibility to P. syringae infection compared to the wild-type (Col-0) thus re-establishing a fundamental role of GSH in defense. Apart from general up-accumulation of energy metabolism-related protein-species in both infected Col-0 and pad2-1, several crucial defense-related protein-species were identified to be differentially accumulated. Leucine-rich repeat-receptor kinase (LRR-RK) and nucleotide-binding site-leucine-rich repeat resistance protein (NBS-LRR), known to play a pioneering role against pathogen attack, were only weakly up-accumulated in pad2-1 after infection. Transcriptional and post-transcriptional regulators like MYB-P1 and glycine-rich repeat RNA-binding protein (GRP) and several other stress-related protein-species like heat shock protein 17 (HSP17) and glutathione-S-transferase (GST) were also identified to be differentially regulated in pad2-1 and Col-0 in response to infection. Together, the present investigation reveals that the optimum GSH-level is essential for the efficient activation of plant defense signaling cascades thus conferring resistance to pathogen invasion.
    The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold... more
    The contribution of glutathione (GSH) in stress tolerance, defense response and antioxidant signaling is an established fact. In this study transcriptome analysis of pad2.1, an Arabidopsis thaliana mutant, after combined osmotic and cold stress treatment has been performed to explore the intricate position of GSH in the stress and defense signaling network in planta. Microarray data revealed the differential regulation of about 1674 genes in pad2.1 amongst which 973 and 701 were significantly up- and down-regulated respectively. Gene enrichment, functional pathway analysis by DAVID and MapMan analysis identified various stress and defense related genes viz. members of heat shock protein family, peptidyl prolyl isomerase (PPIase), thioredoxin peroxidase (TPX2), glutathione-S-transferase (GST), NBS-LRR type resistance protein etc. as down-regulated. The expression pattern of the above mentioned stress and defense related genes and APETALA were also validated by comparative proteomic a...
    The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To... more
    The contribution of Glutathione (GSH) in drought stress tolerance is an established fact. However, the proteins which are directly or indirectly related to the increased level of GSH in response to drought stress are yet to be known. To explore this, here, transgenic tobacco plants (NtGp 11) overexpressing gamma-glutamylcysteine synthetase (γ-ECS) was tested for tolerance against drought stress. NtGp 11 conferred tolerance to drought stress by increased germination rate, water retention, water recovery, chlorophyll, and proline content compared with wild-type plants. Semi-quantitative RT-PCR analysis revealed that the transcript levels of stress-responsive genes were higher in NtGp 11 compared with wild-type in response to drought stress. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI TOF-TOF MS/MS analysis has been used to identify 43 differentially expressed proteins in response to drought in wild-type and NtGp 11 plants. The results demonstrated the up-accumulation of 58.1% of proteins among which 36%, 24%, and 20% of them were related to stress and defense, carbon metabolism and energy metabolism categories, respectively. Taken together, our results demonstrated that GSH plays an important role in combating drought stress in plants by inducing stress related genes and proteins like HSP70, chalcone synthase, glutathione peroxidase, thioredoxin peroxidase, ACC oxidase, and heme oxygenase I.
    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long are widely distributed in different plant species and play as key signaling intermediates in... more
    Several signaling molecules critically regulate the physiological responses in plants. Among them, miRNAs, generally 21-24 nucleotides long are widely distributed in different plant species and play as key signaling intermediates in diverse physiological responses. The mature miRNAs are synthesized from MIR genes by RNA polymerase II and processed by Dicer-like (DCL) protein family members associated with some accessory protein molecules. The processed miRNAs are transported to the cytoplasm from the nucleus by specific group of transporters and incorporated into RNA-induced silencing complex (RISC) complex for specific mRNA cleavage. MicroRNAs can suppress the diverse gene expression, depending on the sequence complementarity of the target transcript except of its own gene. Besides it, miRNAs can modulate the gene expression by DNA methylation and translational inhibition of the target transcript. Different classes of DCLs and Argonaute proteins (AGOs) help the miRNAs-mediated gene silencing mechanism in plants.
    Research Interests: