Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Stuart Critz

    Some neurochemical features of the neuronal circuitry regulating dopamine release were examined in the retina of the turtle, Pseudemys scripta elegans. Glutamate antagonists that block hyperpolarizing bipolar cells, such as 2,3 piperidine... more
    Some neurochemical features of the neuronal circuitry regulating dopamine release were examined in the retina of the turtle, Pseudemys scripta elegans. Glutamate antagonists that block hyperpolarizing bipolar cells, such as 2,3 piperidine dicarboxylic acid (PDA), produced dose-dependent dopamine release. In contrast, the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), which blocks depolarizing bipolar cell responses with high specificity, had no effect on the release of dopamine. The gamma-aminobutyric acid (GABA) antagonist, bicuculline, also produced potent dose-dependent release of dopamine. The release of dopamine produced by PDA was blocked by exogenous GABA and muscimol, suggesting that the PDA-mediated release process was polysynaptic and involved a GABAergic synapse interposed between the bipolar and dopaminergic amacrine cells. The only other agents that produced dopamine release were chloride-free media and high extracellular K+; in particular, kainic acid and glutamate itself were ineffective. These results suggest that the primary neuronal chain mediating dopamine release in the turtle retina is: cone----hyperpolarizing bipolar cell----GABAergic amacrine cell----dopaminergic amacrine cell.
    Abstract: The peptide neurotransmitter Phe-Met-Arg-PheNH2 (FMRFamide) increases outward K+ currents and promotes dephosphorylation of many phosphoproteins in Aplysia sensory neurons. We examined FMRFamide-induced current responses in... more
    Abstract: The peptide neurotransmitter Phe-Met-Arg-PheNH2 (FMRFamide) increases outward K+ currents and promotes dephosphorylation of many phosphoproteins in Aplysia sensory neurons. We examined FMRFamide-induced current responses in sensory neurons injected with thiophosphorylated protein phosphate inhibitor-1 and inhibitor-2 (I-1 and I-2), two structurally different vertebrate protein phosphatase-1 (PP1) inhibitors to define a role for PP1 in the physiological actions of FMRFamide. Thiophosphorylated I-1 and I-2 both reduced the amplitude of outward currents elicited by FMRFamide by 50–60% and were as effective as microcystin-LR, which inhibited both PP1 and protein phosphatase-2A in Aplysia neuronal extracts. These data suggested that of the two major neuronal protein serine/threonine phosphatases, FMRFamide utilized primarily PP1 to open serotonin-sensitive K+ (S-K+) channels. Earlier studies showed that a membrane-associated phosphatase regulated S-K+ channels in cell-free patches from sensory neurons. Utilizing its unique substrate specificity and inhibitor sensitivity, we have characterized PP1 as the principal protein phosphatase associated with neuronal plasma membranes. Two protein phosphatase activities (apparent Mr values of 170,000 and 38,000) extracted from crude membrane preparations from the Aplysia nervous system were shown to be isoforms of PP1. These biochemical and physiological studies suggest that PP1 is preferentially associated with neuronal membranes and that its activity may be required for the induction of outward K+ currents in the Aplysia sensory neurons by FMRFamide.
    During coronary angioplasty, a stair-step decrease in peak S-T segment elevation from the first to the second coronary occlusion has been assumed to indicate a preconditioning (PC) effect. This association was evaluated with myocardial... more
    During coronary angioplasty, a stair-step decrease in peak S-T segment elevation from the first to the second coronary occlusion has been assumed to indicate a preconditioning (PC) effect. This association was evaluated with myocardial electrograms in rabbits, which revealed that two sequential 5-min coronary occlusions resulted in a marked decrease in the area under the S-T segment voltage-time curve (P < 0.05) with no change during a third occlusion. Pretreatment with either 5-hydroxydecanoate, a mitochondrial ATP-sensitive potassium (K(ATP)) channel blocker, or anisomycin, an activator of stress-activated protein kinases, had no effect on the stair-step decline in the S-T segment voltage between the first two occlusions. HMR-1883, a potent closer of sarcolemmal K(ATP) channels, abolished changes in S-T segment elevation after brief coronary occlusions but had no effect on the infarct-sparing property of the two preconditioning 5-min occlusions. Interestingly, HMR-1883 blocked myocardial protection from diazoxide, raising doubt that the latter opens only mitochondrial channels. Therefore, myocardial protection and S-T segment changes during ischemia are dissociated. These data suggest that it is the mitochondrial K(ATP) channel that protects the myocardium, and it is the sarcolemmal channel that is responsible for changes in S-T elevation. Therefore, it cannot always be inferred that changes in S-T segment elevation reflect the state of myocardial protection.
    1. The electrophysiological properties of the sensory neurons that mediate withdrawal reflexes in Aplysia are modulated by a number of second messengers. For example, the second messengers adenosine 3',5'-cyclic... more
    1. The electrophysiological properties of the sensory neurons that mediate withdrawal reflexes in Aplysia are modulated by a number of second messengers. For example, the second messengers adenosine 3',5'-cyclic monophosphate (cAMP) and arachidonic acid modulate the S-K+ current (IK,S) and the calcium-activated K+ current (IK,Ca). Recent evidence suggests that protein kinase C (PKC) may also be an important regulator of cellular plasticity. In the present study we examined the possibility that IK,Ca was modulated by the activation of PKC in the pleural sensory neurons. 2. In voltage-clamped sensory neurons the application of phorbol esters, such as phorbol dibutyrate (PDBu), phorbol myristate (PMA), and phorbol diacetate (PDAc), which activate PKC, caused a dose-dependent increase in a voltage-dependent current with properties that resembled IK,Ca. The inactive isomer of phorbol ester, 4 alpha-phorbol, was without effect. 3. This phorbol ester-sensitive current had the kinetics and pharmacological sensitivity of IK,Ca. The current developed slowly during step depolarizations, showed little inactivation, and was activated at membrane potentials greater than approximately 0 mV. In addition, the current modulated by phorbol esters was blocked by a concentration of tetraethylammonium (TEA) that blocks a component of IK,Ca in the sensory neurons. 4. IK,Ca, which was activated directly by the iontophoretic injection of Ca2+, was also enhanced by PDBu. Moreover, the enhancement of Ca(2+)-elicited responses by PDBu persisted after Ca2+ influx was blocked by cobalt. These results indicate that at least one component of the modulation of IK,Ca by PDBu was independent of the modulation of voltage-dependent Ca2+ channels.(ABSTRACT TRUNCATED AT 250 WORDS)
    1. The electrophysiological properties of sensory neurons that mediate withdrawal reflexes of Aplysia can be modulated by a variety of neurotransmitters. We compared the known excitatory actions of serotonin (5-HT) with the actions of... more
    1. The electrophysiological properties of sensory neurons that mediate withdrawal reflexes of Aplysia can be modulated by a variety of neurotransmitters. We compared the known excitatory actions of serotonin (5-HT) with the actions of FMRFamide (Phe-Met-Arg-Phe-NH2) and myomodulin (Pro-Met-Ser-Met-Leu-Arg-Leu-NH2) on the durations of action potentials and excitability. In addition, with the use of voltage-clamp and pharmacological separation techniques, we characterized the membrane currents that were modulated by each of the three agents. 2. Application of 5-HT produced an increase in the duration of action potentials and an enhancement of excitability in somata of the tail sensory neurons. FMRFamide and myomodulin reversed these excitatory effects and decreased the duration of action potentials and excitability. These results indicated that FMRFamide and myomodulin exerted inhibitory effects on the electrophysiological properties of the sensory neurons. properties of the sensory neurons. 3. FMRFamide appeared to modulate three K+ currents. The first current, which was increased by FMRFamide, had properties closely resembling those of the S-K+ current (IK,S). These properties include slow activation, little inactivation, and relative insensitivity to the K+ channel blockers 4-aminopyridine (4-AP) and tetraethylammonium (TEA). The second current, which was reduced by FMRFamide, had kinetic and pharmacological properties similar to those of a component of the Ca(2+)-activated K+ current (IK,Ca). Finally, at large depolarizations, FMRFamide appeared to increase a third current that was attenuated by 4-AP, suggesting that FMRFamide also modulated the delayed or voltage-dependent K+ current (IK,V). 4. Myomodulin appeared to modulate two of the currents modulated by FMRFamide, because it increased both IK,S and IK,V. Unlike FMRFamide, however, myomodulin did not appear to modulate IK,Ca. 5. Arachidonic acid mimicked the modulation of IK,S, IK,Ca, and IK,V by FMRFamide. Because myomodulin did not modulate IK,Ca, it appears that a second messenger other than arachidonic acid or its metabolites mediates the modulatory effects of myomodulin. 6. These results indicate that both FMRFamide and myomodulin can inhibit the tail sensory neurons by increasing IK,S. FMRFamide, but not myomodulin, also reduces IK,Ca, which suggests that under some conditions FMRFamide may also have excitatory actions. Finally, these results suggest that the effects of FMRFamide and myomodulin may be mediated by different second-messenger systems.
    ABSTRACT
    Both mitochondrial ATP-sensitive K+ (KATP) channels and the actin cytoskeleton have been proposed to be end-effectors in ischemic preconditioning (PC). For evaluation of the participation of these proposed end effectors, rabbits underwent... more
    Both mitochondrial ATP-sensitive K+ (KATP) channels and the actin cytoskeleton have been proposed to be end-effectors in ischemic preconditioning (PC). For evaluation of the participation of these proposed end effectors, rabbits underwent 30 min of regional ischemia and 3 h of reperfusion. PC by 5-min ischemia + 10-min reperfusion reduced infarct size by 60%. Diazoxide, a mitochondrial KATP-channel opener, administered before ischemia was protective. Protection was lost when diazoxide was given after onset of ischemia. Anisomycin, a p38/JNK activator, reduced infarct size, but protection from both diazoxide and anisomycin was abolished by 5-hydroxydecanoate (5-HD), an inhibitor of mitochondrial KATP channels. Isolated adult rabbit cardiomyocytes were subjected to simulated ischemia by centrifuging the cells into an oxygen-free pellet for 3 h. PC was induced by prior pelleting for 10 min followed by resuspension for 15 min. Osmotic fragility was assessed by adding cells to hypotonic (85 mosmol) Trypan blue. PC delayed the progressive increase in fragility seen in non-PC cells. Incubation with diazoxide or pinacidil was as protective as PC. Anisomycin reduced osmotic fragility, and this was reversed by 5-HD. Interestingly, protection by PC, diazoxide, and pinacidil could be abolished by disruption of the cytoskeleton by cytochalasin D. These data support a role for both mitochondrial KATP channels and cytoskeletal actin in protection by PC.
    Ischemic preconditioning (PC) reduces myocardial infarction by a mechanism that involves opening of mitochondrial ATP-dependent potassium channels (mK(ATP)), reactive oxygen species (ROS), and possibly activation of p38 mitogen-activated... more
    Ischemic preconditioning (PC) reduces myocardial infarction by a mechanism that involves opening of mitochondrial ATP-dependent potassium channels (mK(ATP)), reactive oxygen species (ROS), and possibly activation of p38 mitogen-activated protein kinase (p38 MAPK). The actual order of these steps, however, is a matter of current debate. This study examined whether protection afforded by menadione, which protects by causing mitochondria to produce ROS, requires mK(ATP) opening. In addition, we tested whether protection from anisomycin, a p38 MAPK activator, is dependent on ROS production. Isolated, buffer-perfused rat hearts were pretreated with menadione, and infarction was assessed after 30 min of regional ischemia and 120 min of reperfusion. Menadione reduced infarction in a dose-dependent manner with an EC(50) of 270 nM. Menadione's infarct-limiting effect was insensitive to 200 microM 5-hydroxydecanoate (5HD), an mK(ATP) channel blocker, whereas protection by diazoxide and PC were blocked by 5HD. Anisomycin caused hearts to resist infarction and this protective effect was abrogated by SB203580, a p38 MAPK inhibitor, and 2-mercaptopropionylglycine (MPG), a free radical scavenger. These results indicate that mK(ATP) opening occurs upstream of mitochondrial ROS generation in the protective pathway. Furthermore, protection afforded by anisomycin was p38 MAPK- and ROS-dependent.
    The role of mitochondrial free radicals in the cardioprotective effect of ischemic preconditioning was examined in isolated buffer-perfused rat hearts. Infarct size in control rat hearts subjected to 30 min of regional ischemia and 120... more
    The role of mitochondrial free radicals in the cardioprotective effect of ischemic preconditioning was examined in isolated buffer-perfused rat hearts. Infarct size in control rat hearts subjected to 30 min of regional ischemia and 120 min of reperfusion was 32.6 +/- 3.4% of the risk zone. Ischemic preconditioning (3 cycles of 5-min global ischemia/5-min reperfusion) before the same regional ischemia and reperfusion protocol significantly reduced infarct size to 2.6 +/- 0.8% of the risk zone. Perfusion with menadione (3.0 microM), a generator of mitochondrial free radicals, in lieu of preconditioning ischemia significantly reduced infarction to 10.9 +/- 2.7%. N-2-mercaptopropionylglycine (1.0 mM), a free radical scavenger, blocked the protection of menadione, significantly increasing infarction to 23.5 +/- 1.1%. Myxothiazol (0.6 microM), a site III mitochondrial inhibitor, blocked the protection of menadione and significantly increased infarction to 25.2 +/- 3.8%. The infarct-limiting effect of menadione was attenuated to 19.7 +/- 1.5% of the risk zone by 10 microM SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor. Furthermore, menadione significantly increased p38 MAPK phosphorylation to a level 5.6-fold over basal. These results indicate that free radicals that originate within mitochondria can activate p38 MAPK and protect hearts against infarction.
    We demonstrated previously γ-globin gene inhibition in K562 cells and primary erythroid progenitors treated with interleukin-6. Although several cis-acting elements have been identified in the globin promoters, the precise mechanism for... more
    We demonstrated previously γ-globin gene inhibition in K562 cells and primary erythroid progenitors treated with interleukin-6. Although several cis-acting elements have been identified in the globin promoters, the precise mechanism for cytokine-mediated globin gene regulation remains to be elucidated. In this report we demonstrate inhibitors of Stat3 phosphorylation abrogate interleukin-6-mediated γ gene silencing in erythroid cells. DNA-protein binding studies established Stat3 interaction in the 5′-untranslated γ-globin promoter region. Furthermore, co-transfection experiments with Stat3β demonstrate γ promoter inhibition in a concentration-dependent manner, which was significantly reversed when the cognate Stat3-binding site in the 5′-untranslated region was mutated. These studies establish a novel mechanism for γ gene silencing through the STAT signal transduction pathway.
    Acetylcholine (ACh) and bradykinin (BK) are potent pharmacological agents which mimic ischemic preconditioning (IPC) enabling hearts to resist infarction during a subsequent period of ischemia. The cardioprotective pathways activated by... more
    Acetylcholine (ACh) and bradykinin (BK) are potent pharmacological agents which mimic ischemic preconditioning (IPC) enabling hearts to resist infarction during a subsequent period of ischemia. The cardioprotective pathways activated by BK but not ACh may also protect when activated at reperfusion. ACh and BK stimulate Gi/o-linked receptors and ultimately mediate protection by opening mitochondrial ATP-sensitive potassium channels with the generation of reactive oxygen species that act as second messengers to activate protein kinase C (PKC). There appear to be key differences, however, in the pathways prior to potassium channel opening for these two receptors. This review aims to summarize what is currently known about pharmacological preconditioning by ACh and BK with an emphasis on differences that are seen in the signal transduction cascades. Understanding the cellular basis of protection by ACh and BK is a critical step towards developing pharmacological agents that will prevent infarction during ischemia resulting from coronary occlusion or heart attack.
    The Shaw-type K+ channel Kv3.1 was stably transfected in human embryonic kidney cells. Voltage dependence of activation, K+ permeability, sensitivity to external tetraethylammonium, and unitary conductance were similar to Kv3.1 channels... more
    The Shaw-type K+ channel Kv3.1 was stably transfected in human embryonic kidney cells. Voltage dependence of activation, K+ permeability, sensitivity to external tetraethylammonium, and unitary conductance were similar to Kv3.1 channels expressed transiently in Xenopus oocytes. Kv3.1 channels appear to be regulated because the protein kinase C activator phorbol 12,13-dibutyrate decreased Kv3.1 currents. Based on these results, we find that the stable expression of voltage-gated K+ channels in human embryonic kidney cells appears to be well suited for analysis of both biophysical and biochemical regulatory processes.
    It has been proposed that ischemic preconditioning involves the regulation of ATP-sensitive potassium (K(ATP)) channels. The evidence is based largely on the ability of certain K(ATP) channel modulators to modify the protection in the... more
    It has been proposed that ischemic preconditioning involves the regulation of ATP-sensitive potassium (K(ATP)) channels. The evidence is based largely on the ability of certain K(ATP) channel modulators to modify the protection in the various models of preconditioning. This study has investigated how two K(ATP) channel openers, pinacidil and nicorandil, affect both membrane currents and viability in isolated and ischemic rabbit cardiomyocytes. We used the whole-cell recording technique and in separate experiments viability was assessed by exposure to these drugs during ischemia. Pinacidil (50 micromol/l) increased K(ATP) current approximately four-fold in isolated cardiomyocytes. This increase reversed rapidly after treatment with the K(ATP) channel blocker glibenclamide (200 nmol/l). After simulated ischemia, pinacidil protected cardiomyocytes (the area under cell-death curve was 29.5 +/- 1.1% x h) which was significantly less than that in control (46.9 +/- 2.0% x h). The protection from pinacidil could be completely eliminated by pretreatment with 10 microM glibenclamide (46.9 +/- 2.0% x h). In contrast, nicorandil (1 mmol/l), which opens K(ATP) channels in some tissues, caused no detectable effect on the K(ATP) current. Similarly, nicorandil did not produce cardioprotection. These results indicate that pinacidil and nicorandil have very different effects on rabbit cardiomyocyte K(ATP) channels. Furthermore, because protection correlated with the ability of the agent to open the channel, they support a role for K(ATP) channels in preconditioning.
    Acetylcholine (ACh), like ischemic preconditioning (PC), protects against infarction and is dependent on generation of reactive oxygen species (ROS). To investigate the mechanism by which ACh causes ROS production, isolated adult rabbit... more
    Acetylcholine (ACh), like ischemic preconditioning (PC), protects against infarction and is dependent on generation of reactive oxygen species (ROS). To investigate the mechanism by which ACh causes ROS production, isolated adult rabbit cardiomyocytes underwent a timed incubation in reduced MitoTracker Red, which is oxidized to a fluorescent form after exposure to ROS. The mitochondrial ATP-sensitive potassium (mK(ATP)) channel opener diazoxide (50 microM) increased fluorescence by 47 +/- 9% (P = 0.007), indicating that opening of mK(ATP) leads to ROS generation, and that increase was blocked by the mK(ATP) blocker 5-hydroxydecanoate (5HD, 1 mM); 250 microM ACh caused a similar increase in ROS generation (+45 +/- 6% for all experiments, P < 0.001). ACh-induced ROS production was prevented by (1) blockade of muscarinic surface receptors with 100 microM atropine (-6 +/- 2%, P = n.s.) or 250 nM 4-DAMP (+5 +/- 13%, P = n.s.), indicating that ACh's effect was receptor mediated; (2) closing K(ATP) channels with either the non-selective channel closer glibenclamide (50 microM) (-1.2 +/- 17%, P = n.s.) or the selective mK(ATP) closer 5HD (-1.8 +/- 9%, P = n.s.), indicating that increased ROS production involved opening of mK(ATP); (3) blockade of mitochondrial electron transport chain with 200 nM myxothiazol (-4 +/- 9%, P = n.s.), indicating ROS came from the mitochondria; (4) addition of 100 nM wortmannin (-13 +/- 12%, P = n.s.), indicating that phosphatidylinositol 3-(PI3)-kinase was involved; and (5) blockade of Src-kinase with 1 microM PP2 (-2 +/- 5%, P = n.s.), indicating the involvement of an Src-kinase. These results support the hypothesis that occupation of muscarinic surface receptors by ACh causes activation of PI3- and Src-kinases that then open mK(ATP) resulting in mitochondrial ROS generation and triggering of the preconditioned state.
    We demonstrated previously gamma-globin gene inhibition in K562 cells and primary erythroid progenitors treated with interleukin-6. Although several cis-acting elements have been identified in the globin promoters, the precise mechanism... more
    We demonstrated previously gamma-globin gene inhibition in K562 cells and primary erythroid progenitors treated with interleukin-6. Although several cis-acting elements have been identified in the globin promoters, the precise mechanism for cytokine-mediated globin gene regulation remains to be elucidated. In this report we demonstrate inhibitors of Stat3 phosphorylation abrogate interleukin-6-mediated gamma gene silencing in erythroid cells. DNA-protein binding studies established Stat3 interaction in the 5'-untranslated gamma-globin promoter region. Furthermore, co-transfection experiments with Stat3 beta demonstrate gamma promoter inhibition in a concentration-dependent manner, which was significantly reversed when the cognate Stat3-binding site in the 5'-untranslated region was mutated. These studies establish a novel mechanism for gamma gene silencing through the STAT signal transduction pathway.
    Ischemic preconditioning (PC) reduces myocardial infarction by a mechanism that involves opening of mitochondrial ATP-dependent potassium channels (mK(ATP)), reactive oxygen species (ROS), and possibly activation of p38 mitogen-activated... more
    Ischemic preconditioning (PC) reduces myocardial infarction by a mechanism that involves opening of mitochondrial ATP-dependent potassium channels (mK(ATP)), reactive oxygen species (ROS), and possibly activation of p38 mitogen-activated protein kinase (p38 MAPK). The actual order of these steps, however, is a matter of current debate. This study examined whether protection afforded by menadione, which protects by causing mitochondria to produce ROS, requires mK(ATP) opening. In addition, we tested whether protection from anisomycin, a p38 MAPK activator, is dependent on ROS production. Isolated, buffer-perfused rat hearts were pretreated with menadione, and infarction was assessed after 30 min of regional ischemia and 120 min of reperfusion. Menadione reduced infarction in a dose-dependent manner with an EC(50) of 270 nM. Menadione's infarct-limiting effect was insensitive to 200 microM 5-hydroxydecanoate (5HD), an mK(ATP) channel blocker, whereas protection by diazoxide and PC were blocked by 5HD. Anisomycin caused hearts to resist infarction and this protective effect was abrogated by SB203580, a p38 MAPK inhibitor, and 2-mercaptopropionylglycine (MPG), a free radical scavenger. These results indicate that mK(ATP) opening occurs upstream of mitochondrial ROS generation in the protective pathway. Furthermore, protection afforded by anisomycin was p38 MAPK- and ROS-dependent.
    Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial... more
    Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.
    Bradykinin (BK) mimics ischemic preconditioning by generating reactive oxygen species (ROS). To identify intermediate steps that lead to ROS generation, rabbit cardiomyocytes were incubated in reduced MitoTracker Red stain, which becomes... more
    Bradykinin (BK) mimics ischemic preconditioning by generating reactive oxygen species (ROS). To identify intermediate steps that lead to ROS generation, rabbit cardiomyocytes were incubated in reduced MitoTracker Red stain, which becomes fluorescent after exposure to ROS. Fluorescence intensity in treated cells was expressed as a percentage of that in paired, untreated cells. BK (500 nM) caused a 51 +/- 16% increase in ROS generation (P < 0.001). Coincubation with either the BK B2-receptor blocker HOE-140 (5 microM) or the free radical scavenger N-(2-mercaptopropionyl)glycine (1 mM) prevented this increase, which confirms that the response was receptor mediated and ROS were actually being measured. Closing mitochondrial ATP-sensitive K+ (mitoKATP) channels with 5-hydroxydecanoate (5-HD, 1 mM) prevented increased ROS generation. BK-induced ROS generation was blocked by Nomega-nitro-m-arginine methyl ester (m-NAME, 200 microM), which implicates nitric oxide as an intermediate. Blockade of guanylyl cyclase with 1-H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ, 10 microM) aborted BK-induced ROS generation but not that from diazoxide, a direct opener of mitoKATP channels. The protein kinase G (PKG) blocker 8-bromoguanosine-3',5'-cyclic monophosphorothioate (25 microM) eliminated the effects of BK. Conversely, direct activation of PKG with 8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (100 microM) increased ROS generation (39 +/- 15%; P < 0.004) similar to BK. This increase was blocked by 5-HD. Finally, the nitric oxide donor S-nitroso-N-acetylpenicillamine (1 microM) increased ROS by 34 +/- 6%. This increase was also blocked by 5-HD. In intact rabbit hearts, BK (400 nM) decreased infarction from 30.5 +/- 3.0 of the risk zone in control hearts to 11.9 +/- 1.4% (P < 0.01). This protection was aborted by either 200 microM m-NAME or 2 microM ODQ (35.4 +/- 5.7 and 30.4 +/- 3.0% infarction, respectively; P = not significant vs. control). Hence, BK preconditions…
    Exogenous nitric oxide (NO) triggers a preconditioning-like effect in heart via a pathway that is dependent on reactive oxygen species. This study examined the signaling pathway by which the NO donor S-nitroso-N-acetylpenicillamine (SNAP,... more
    Exogenous nitric oxide (NO) triggers a preconditioning-like effect in heart via a pathway that is dependent on reactive oxygen species. This study examined the signaling pathway by which the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 2 microM) triggers its anti-infarct effect. Isolated rabbit hearts experienced 30 min of regional ischemia and 120 min of subsequent reperfusion. Infarct size was determined by triphenyltetrazolium chloride staining. Infarct size was reduced from 30.5 +/- 3.0% of the risk zone in control hearts to 10.2 +/- 2.0% in SNAP-treated hearts. Bracketing the SNAP infusion with either the guanylyl cyclase blocker 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (2 microM) or the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel blocker 5-hydroxydecanoate (200 microM) completely blocked the infarct-sparing effect of SNAP (34.3 +/- 3.8 and 32.2 +/- 1.6% infarction, respectively). Pretreatment of hearts with 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (10 microM), which is a cell-permeable cGMP analog that activates protein kinase G, mimicked the preconditioning effect of SNAP by reducing infarct size to 7.5 +/- 1.1% of the risk zone. This salutary effect was abolished by either the free radical scavenger N-(2-mercaptopropionyl)glycine (1 mM) or 5-hydroxydecanoate (100 microM; 28.9 +/- 2.7 and 33.6 +/- 5.0% infarction of the risk zone, respectively). To confirm these functional data and the effect of SNAP on the guanylyl cyclase-protein kinase G signaling pathway, cGMP levels were measured. SNAP increased the level from 0.18 +/- 0.04 to 0.61 +/- 0.14 pmol/mg of protein (P < 0.05). These data suggest that exogenous NO triggers the preconditioning effect by initiating a cascade of events including stimulation of guanylyl cyclase to make cGMP, activation of protein kinase G, opening of mitoK(ATP) channels, and, finally, production of reactive oxygen species.