Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Surajit Sinha

    Surajit Sinha

    Genetic screening identifies the atypical tetraspanin TM4SF1 as a strong mediator of metastatic reactivation of breast cancer. Intriguingly, TM4SF1 couples the collagen receptor tyrosine kinase DDR1 to the cortical adaptor syntenin 2 and,... more
    Genetic screening identifies the atypical tetraspanin TM4SF1 as a strong mediator of metastatic reactivation of breast cancer. Intriguingly, TM4SF1 couples the collagen receptor tyrosine kinase DDR1 to the cortical adaptor syntenin 2 and, hence, to PKCα. The latter kinase phosphorylates and activates JAK2, leading to the activation of STAT3. This non-canonical mechanism of signaling induces the expression of SOX2 and NANOG; sustains the manifestation of cancer stem cell traits; and drives metastatic reactivation in the lung, bone, and brain. Bioinformatic analyses and pathological studies corroborate the clinical relevance of these findings. We conclude that non-canonical DDR1 signaling enables breast cancer cells to exploit the ubiquitous interstitial matrix component collagen I to undergo metastatic reactivation in multiple target organs.
    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that >98% of HIV sequences contain consensus MAR... more
    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that >98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.