Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Tanya Peshkur

    Tanya Peshkur

    Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the... more
    Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.
    Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and... more
    Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefol...
    Bacteria of the genus Rhodococcus were found to be able to accumulate cesium by means of active transport and nonspecific sorption on the cell surface structures. The maximum removal (up to 97%) of cesium from a medium with ammonium... more
    Bacteria of the genus Rhodococcus were found to be able to accumulate cesium by means of active transport and nonspecific sorption on the cell surface structures. The maximum removal (up to 97%) of cesium from a medium with ammonium acetate was observed at 28 degrees C, pH 7.8-8.6, and an equimolar content (0.2 mM) of potassium and cesium ions in the medium. The most active cesium-accumulating Rhodococcus sp. strains can be used for purification of industrial wastewaters contaminated with radionuclides.
    ABSTRACT Adsorbents were synthesized to obtain novel silica nanoparticles with a broad pore-size distribution (herein referred to as USG-41). The material demonstrated fast adsorption rates with highest adsorption capacities following... more
    ABSTRACT Adsorbents were synthesized to obtain novel silica nanoparticles with a broad pore-size distribution (herein referred to as USG-41). The material demonstrated fast adsorption rates with highest adsorption capacities following Langmuir adsorption. Kinetic data best fit the intraparticle diffusion model demonstrating a two-step, surface and pore, adsorption process with pore diffusion being the rate determining step. This data provides key evidence of internal pore chelation of dichromate ions by USG-41. In contrast silica adsorbents (SBA-15 and MCM-41) prepared with similar average pore sizes to USG-41, but with narrow pore-size distributions, had lower adsorption capacities and their kinetic date best fit pseudo-second order diffusion models indicating a one-step, surface only, adsorption process. This study clearly demonstrated that pores size distribution, not the surface area or the average pore size, was central to ensure optimum adsorbent performance for removal of Cr (VI) from contaminated water.
    Manure generated by intensive livestock operations poses potential ecological risk in the form of water pollution and greenhouse gas emission. To assess the impact of biochar on coarse-textured soils under contrasting nutrient management... more
    Manure generated by intensive livestock operations poses potential ecological risk in the form of water pollution and greenhouse gas emission. To assess the impact of biochar on coarse-textured soils under contrasting nutrient management regimes, a 55-d incubation was conducted using unplanted soil columns amended with manure, slurry, or fertilizer (plus unamended control), each with or without biochar applied at 2% soil mass (dry weight basis). Under repeated leaching, the cumulative NO emission from the columns was significantly affected by the presence of biochar ( < 0.0001), although these data were not normally distributed. Results indicated that the biochar-amended soils emitted significantly less NO than their unamended counterparts, with the exception of manure-amended soils. The presence of biochar increased the pH of column leachate by 0.08 to 1.70 and significantly decreased the cumulative amount of mineral N leached from the soil. The presence of biochar significantly increased the amount of PO-P in soil leachate, but there was no significant difference between the means for any of the amendments used on their own relative to their biochar-amended counterparts. The data demonstrate that biochar could potentially aid in the mitigation of NO emissions from certain soils and in N loss in leachate from soil amended with slurry, manure, or fertilizer used in livestock systems.