Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    harish pant

    The technique for covalently labeling proteins with 125I-labelled Bolton-Hunter reagent was used to determine the quantities of proteins released from the axoplasmic side of the squid axon membrane. The reagent could be introduced into... more
    The technique for covalently labeling proteins with 125I-labelled Bolton-Hunter reagent was used to determine the quantities of proteins released from the axoplasmic side of the squid axon membrane. The reagent could be introduced into the interior of the axon by the technique of intracellular perfusion, the radioiodination reaction being carried out in situ. Alternatively, the reaction could be carried out in vitro, i.e., by mixing the reagent with samples of proteins dissolved in the intracellular perfusion fluid collected from the axon. This technique was found to be sensitive enough to permit analysis of a large number of protein samples collected from a single axon. By the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis, it was found that proteins of approx. 56 000 daltons were released into the perfusate when a solution of potassium chloride or potassium bromide was introduced into the interior of an axon. Suppression of axonal excitability was associated with this release of proteins. The significance of these findings in relation to the structure and function of the axon is discussed.
    The effects of ethanol on phosphorylation in the erythrocyte ghost membranes was studied. Four groups of rats were used: controls; prodromal phase; overt withdrawal syndrome; and treated with a single dose (6g/kg) of ethanol. Spectrin... more
    The effects of ethanol on phosphorylation in the erythrocyte ghost membranes was studied. Four groups of rats were used: controls; prodromal phase; overt withdrawal syndrome; and treated with a single dose (6g/kg) of ethanol. Spectrin (Band 2) phosphorylation was enhanced during prodromal phase (200 +/- 12%) and during overt ethanol withdrawal syndrome (150 +/- 18%), while a single dose of ethanol produced no significant change. Addition of micromolar calcium chloride solution to the phosphorylating medium produced pronounced decrease in spectrin phosphorylation in the ghost membranes isolated from controls and those treated with a single dose of ethanol, while this effect of calcium was less pronounced in the ghost membranes isolated from rats in the prodromal phase and in the withdrawal syndrome. This suggests that due to prolonged ethanol treatment membrane phosphorylating properties were less sensitive to the change in calcium concentration. The membrane polypeptide composition was unaffected upon ethanol treatment.
    Acid protease activity was measured in homogenized stellate ganglion, axoplasm extruded from the squid giant axon, homogenized fin nerves, and in lysed synaptosomes prepared from the optic lobe of the squid. At least two different acid... more
    Acid protease activity was measured in homogenized stellate ganglion, axoplasm extruded from the squid giant axon, homogenized fin nerves, and in lysed synaptosomes prepared from the optic lobe of the squid. At least two different acid protease classes were distinguished on the bases of their inhibitor profiles. Acid protease activity was present in each of the above tissues except extruded axoplasm. This result suggests that the acid protease activity found in our homogenized fin nerves might be located not within the axons but rather in glial cells or extracellular tissue. The absence of acid protease activity in extruded axoplasm indicates that acid proteases are unlikely to play a significant role in the catabolism of intracellular proteins along the length of the axon.
    The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular... more
    The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular weight (greater than 300 kDa) and 220-kDa neurofilament proteins are the major endogenous substrates for the kinases in the axoplasm and the neurofilament preparation, whereas 95- and less than 60-kDa proteins are the major phosphoproteins in the ganglion cell preparation. The squid axon neurofilament (SANF) protein kinase activity appeared to be both cAMP and Ca2+ independent and could phosphorylate both casein (Km = 40 microM) and histone (Km = 180 microM). The SANF protein kinase could utilize either ATP or GTP in the phosphotransferase reaction, with a Km for ATP of 58 microM and 129.4 microM for GTP when casein was used as the exogenous substrate; and 25 and 98.1 microM for ATP and GTP, respectively, when the endogenous neurofilament proteins were used as substrates. The SANF protein kinase activity was only slightly inhibited by 2,3-diphosphoglycerate and various polyamines at high concentrations and was poorly inhibited by heparin (34% inhibition at 100 micrograms/ml). The failures of heparin to significantly inhibit and the polyamines to stimulate the SANF protein kinase indicate that it is not a casein type II kinase. The relative efficacy of GTP as a phosphate donor indicates that SANF protein kinase differs from known casein type I kinases. Phosphorylated (32P-labeled) neurofilament proteins were only slightly dephosphorylated in the presence of axoplasm or stellate ganglion cell supernatants, and the neurofilament-enriched preparation did not dephosphorylate 32P-labeled neurofilament proteins. The axoplasm and neurofilament preparations had no detectable protein kinase inhibitor activity, but a strong inhibitor activity, which was not dialyzable but was heat inactivatable, was found in ganglion cells. This inhibitor activity may account for the low phosphorylation activity found in the stellate ganglion cells and may indicate inhibitory regulation of SANF protein kinase activity in the ganglion cell bodies.
    A cytoskeletal extract of pure axoplasm, highly enriched with neurofilaments (ANF), was prepared from the giant axon of the squid. This ANF preparation also contained potent kinase activities which phosphorylated the Mr greater than... more
    A cytoskeletal extract of pure axoplasm, highly enriched with neurofilaments (ANF), was prepared from the giant axon of the squid. This ANF preparation also contained potent kinase activities which phosphorylated the Mr greater than 400,000 (high molecular weight) and Mr 220,000 squid neurofilament protein subunits. High salt (1 M) extraction of this ANF preparation solubilized most of the neurofilament proteins and kinase activities and gel filtration on an AcA 44 column separated these two components. The neurofilaments eluted in the void volume of the column while the kinase activities eluted in the 17-44-kDa range of the column. Two major kinase activities were measured in this peak of activity. One of these strongly phosphorylated the phosphate acceptor peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and was completely inhibited by the selective inhibitor of cAMP-dependent kinase Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile- NH2 (Wiptide). Since addition of cAMP did not stimulate activity, this suggested that this kinase was a free catalytic subunit of cAMP-dependent kinase associated with the neurofilaments. The second kinase activity most effectively phosphorylated alpha-casein, and this activity was not affected by Wiptide. The alpha-casein phosphorylating activity (ANF kinase) was the principal activity responsible for neurofilament protein phosphorylation, and was not inhibited by various inhibitors against second messenger regulated kinases, suggesting it was related to the casein kinase family. Four lines of evidence indicate ANF kinase was similar to casein kinase I. These were: 1) the apparent molecular weight determined by gel filtration and the chromatographic elution profile on phosphocellulose column corresponded to casein kinase I; 2) heparin, an inhibitor of casein kinase II at 2-5 micrograms/ml, stimulated both ANF kinase and purified casein kinase I at these concentrations, while CKI-7, a relatively selective inhibitor of casein kinase I, inhibited ANF kinase in a comparable dose-response fashion; 3) purified casein kinase I strongly phosphorylated both ANF protein subunits (like ANF kinase) whereas casein kinase II was relatively ineffective; and 4) tryptic peptide maps of the HMW and Mr 220,000 neurofilament proteins after phosphorylation by ANF kinase or purified casein kinase I showed similar 32P-peptide patterns.
    Recent studies have shown that there exists a family of protein kinases structurally and functionally related to the yeast cell cycle regulatory kinase cdc2 [Meyerson, M., Faha, B., Su, L.-K., Harlow, E. & Tsai, L.-H. (1991) Cold... more
    Recent studies have shown that there exists a family of protein kinases structurally and functionally related to the yeast cell cycle regulatory kinase cdc2 [Meyerson, M., Faha, B., Su, L.-K., Harlow, E. & Tsai, L.-H. (1991) Cold Spring Harbor Symp. Quant. Biol. 56, 177-186 and Meyerson, M., Enders, G. H., Wu, C.-L., Su, L.-K., Gorka, C., Nelson, C., Harlow, E. & Tsai, L.-H. (1992) EMBO J. 11, 2909-2917]. Two members of cdc2 family, p34cdc2 (also named cdk1) and cdk2, have been identified in mammalian cells. cdk1 kinase regulates the progression from G2 to M phase, and cdk2 kinase has been proposed to regulate the progression from G1 to S phase. In this work, we have cloned and structurally characterized a third member of the cdc2 kinase family with 58% amino acid sequence identity to mouse cdk1 and 61% identity to human cdk2. We call this kinase neuronal cdc2-like kinase (nclk) because, in contrast to either cdk1 or cdk2, nclk is expressed at high levels in terminally differentiated neurons no longer in the cell cycle. Previous studies have shown [Hisanaga, S., Kusubata, M., Okumura, E. & Kishimoto, T. (1991) J. Biol. Chem. 266, 21798-21803 and Guan, R. J., Hall, F. L. & Cohlberg, J. A. (1992) J. Neurochem. 58, 1365-1371] that cdk1 kinase, but not other structurally defined protein kinases, could phosphorylate the repeated Lys-Ser-Pro (KSP) motifs found in mammalian high and middle molecular mass neurofilament subunits in vitro, but the precise molecular nature of the endogenous neuronal KSP kinase has remained undefined. The structural similarity of nclk to cdk1 kinase and its high level of expression in terminally differentiated neurons suggest that nclk may play a role in the phosphorylation of the neurofilament KSP repeats in vivo, a function distinct from cell cycle regulation.
    ABSTRACT
    Although cyclin-dependent kinase 5 (Cdk5) is closely related to other cyclin-dependent kinases, its kinase activity is detected only in the postmitotic neurons. Cdk5 expression and kinase activity are correlated with the extent of... more
    Although cyclin-dependent kinase 5 (Cdk5) is closely related to other cyclin-dependent kinases, its kinase activity is detected only in the postmitotic neurons. Cdk5 expression and kinase activity are correlated with the extent of differentiation of neuronal cells in developing brain. Cdk5 purified from nervous tissue phosphorylates neuronal cytoskeletal proteins including neurofilament proteins and microtubule-associated protein tau in vitro. These findings
    One of the hallmarks of Alzheimer's Disease is the presence of abundant neurofibrillary tangles (NFTs) in the... more
    One of the hallmarks of Alzheimer's Disease is the presence of abundant neurofibrillary tangles (NFTs) in the brains of affected individuals. Hyperphosphorylated tau is a major component of paired helical filaments (PHFs) in NFTs. Tau is a neuronal microtubule associated protein found primarily in axons. Normal tau promotes tubulin polymerization and stabilizes microtubule (MT) structures, whereas hyperphosphorylated tau reduces its affinity for MTs and destabilizes MT-structures. This results in the disruption of vital cellular processes (e.g. axonal transport) and leads to the degeneration of affected neurons. Processes leading to the hyperphosphorylation of tau and formation of neurofibrillary lesions in Alzheimer's Disease (AD) brains are not understood. Phosphorylation of a substrate molecule like tau depends upon the equilibrium between kinase and phosphatase activities and the availability of their substrate molecules in a given system. Therefore, to understand the relative roles of kinase and phosphatase activities, we studied the long-term kinetics of phosphorylation in AD and control brain extracts in the presence and absence of the phosphatase inhibitor okadaic acid (OA) using histone, casein and bacterially expressed tau as exogenous substrates. It was found that both kinase and phosphatase activities were higher in AD compared to control brains. Surprisingly, between 18 and 24 hours, there was a robust increase in phosphorylation of endogenous proteins in the brain extracts only when bacterially expressed tau was present in the phosphorylation reaction mixture. This pattern of phosphorylation activity was unaffected by OA. Significant difference in the phosphorylation of tau isoforms was also seen during this period. These data suggest that the expression and differential phosphorylation of certain tau isoforms may be responsible for the robust increase in phosphorylation and may play an important role in Alzheimer's pathology.
    We have investigated the role of the NPXY motif in the insulin-like growth factor I receptor (IGF-IR) by focusing on the activation of the phosphatidylinositol-3' kinase (PI3-K) pathway and DNA synthesis following IGF-I... more
    We have investigated the role of the NPXY motif in the insulin-like growth factor I receptor (IGF-IR) by focusing on the activation of the phosphatidylinositol-3' kinase (PI3-K) pathway and DNA synthesis following IGF-I stimulation. For this purpose, we established stable R-cell lines, which are deficient in endogenous IGF-IR, and express human IGF-IR lacking the whole NPEY(950) sequence (DeltaNPEY). The DeltaNPEY cells showed an apparent autophosphorylation of IGF-IR, albeit with reduced sensitivity to stimulation compared with cells expressing similar levels of wild-type IGF-IR. Activation of insulin receptor substrate (IRS)-1 and IRS-2 was severely impaired in DeltaNPEY cells even at high concentrations of IGF-I. However, recruitment of p85, a regulatory subunit of PI3-K, to activated IRS-2 was similar between the cell lines, but recruitment of p85 to IRS-1 was reduced in DeltaNPEY cells. Essentially similar levels of p85- or phosphotyrosine-associated PI3-K and Akt activities were observed between the cell lines, although the sensitivity to stimulation was reduced in DeltaNPEY cells. Activation of extracellular signal-regulated kinase and DNA synthesis were virtually unaffected by the mutation, in terms of both sensitivity to stimulation and responsiveness. DNA synthesis was completely inhibited by the PI3-K inhibitor, LY294002. These results indicate that the IGF-IR is able to activate the PI3-K pathway and induce DNA synthesis in a normal fashion without the NPXY motif when the receptor is fully activated.
    At autopsy, a most distinctive pathology seen in Alzheimer's disease (AD) brains is numerous abnormal neurons filled with neurofibrillary tangles... more
    At autopsy, a most distinctive pathology seen in Alzheimer's disease (AD) brains is numerous abnormal neurons filled with neurofibrillary tangles (NFTs) containing stable complexes of hyperphosphorylated tau (PHF), neurofilaments and various kinases, among other proteins. Though these neuronal aggregates have been actively studied, their nature and origin are still poorly understood. Our studies of regulation of phosphorylation in neurons of the squid giant fiber system, using P13(suc1) affinity chromatography, suggest that neuronal phosphorylation of cytoskeletal proteins is compartmentalized into active axonal and inactive cell body-specific multimeric complexes of kinases, substrates and phosphatases. To determine whether such compartment-specific phosphorylation complexes are present in human brains, we separated gray matter (enriched in cell bodies) and white matter (enriched in axons) from normal and AD brains and studied the total kinase activities in lysates, pellets and P13(suc1) complexes. In addition, Western blot analysis was used to characterize the proteins associated with P13(suc1) multimeric complexes extracted from gray and white matter. We tested the hypothesis that P13 phosphorylation complexes were abnormally compartmentalized in AD neurons with the more active complexes shifted to cell bodies (gray matter) instead of axons (white matter). We found that (1) endogenous and exogenous substrate-dependent kinase activities of AD and control brain extracts were similar in both gray and white matter. (2) Long post mortem times tend to erase any differences in kinase activity between control and AD extracts. In contrast to shorter post mortem times (4.5-10 hrs), long post mortem times (13-34 hrs) significantly minimize the variances in kinase activities between control and AD brain extracts suggesting that cell death and proteolysis may eliminate any intrinsic differences in enzyme activities. (3) Except for the significantly higher level of histone phosphorylation in control white extracts, the kinase activities of P13(suc1)-derived multimeric complexes from gray and white matter were also similar in control and AD brains. Here, too, variances between control and AD distributions were significantly different (p < 0.001-0.02) suggesting that the P13 complexes were different. We also found differences in the Western blot profiles of P13suc1-associated kinases and cytoskeletal proteins; higher expression of phosphorylated NF-H and PHF-tau in gray matter of AD brains was detected. We believe that such differences in P13 complexes from human control and AD brain samples displaying extensive heterogeneity in age, post mortem time and clinical history, may be important.
    Cdk5, a multifunctional kinase involved in a wide range of neuronal behavior, is regulated by its neuron-specific activators, p35 and p39. It is becoming clear that cdk5, like the MAP kinases, is a key player in signal transduction... more
    Cdk5, a multifunctional kinase involved in a wide range of neuronal behavior, is regulated by its neuron-specific activators, p35 and p39. It is becoming clear that cdk5, like the MAP kinases, is a key player in signal transduction networks underlying neuronal cell survival, growth and differentiation. Our studies of cdk5 KO mice (-/-) have shown that they express a lethal phenotype with abnormal corticogenesis and embryonic death (1). Recently, we have also demonstrated that reconstitution of cdk5 expression with a cdk5 transgene under a neuronal specific promoter of p35, completely rescued such null mice; a wild type phenotype was obtained. This clearly demonstrated that neuronal and not glial cdk5 activity is necessary and sufficient for normal development and survival (2). The p35-/-mouse, which exhibits significant reduced cdk5 activity (3, 4), and a similar disruption of corticogenesis, is not lethal, but develops into a fertile adult with some behavioral abnormalities. Howeve...
    663 ELF Phosphorylation By TGFbRI and Cyclin Dependent Kinases in COS-7 and HepG2 Tumor Cell Lines Nady Golestaneh, Eugene A. Volpe, Jyotshna Kanungo, Stephen R. Evans, Bibhuti Mishra, Harish Pant, Lopa Mishra TGF-b can induce growth... more
    663 ELF Phosphorylation By TGFbRI and Cyclin Dependent Kinases in COS-7 and HepG2 Tumor Cell Lines Nady Golestaneh, Eugene A. Volpe, Jyotshna Kanungo, Stephen R. Evans, Bibhuti Mishra, Harish Pant, Lopa Mishra TGF-b can induce growth inhibition responses during cell cycle progression and escape from this response is a hallmark of many cancer cells. Previously, we demonstrated that TGF-b induces phosphorylation and association of ELF (embryonic liver fodrin) with Smad3 and Smad4 resulting in nuclear translocation. However the precise kinases and receptors by which ELF is phosphorylated remain to be determined. Upon phosphorylation, ELF binds to Smad3 and Smad4, the complex translocates to the nucleus and induces the transcription of downstream genes. Strong evidence implicates the TGF-b signal transduction in suppression of gastric carcinogenesis. Mice that carry a heterozygous disruption of Smad4 or elf/Smad4 present increased gastric tumors. Aims: 1. To determine the TbRs involved ...
    Homeodomain transcription factors regulate development of embryos and cellular physiology in adult systems. Paired-type homeodomain genes constitute a subclass that has been particularly implicated in establishment of neuronal identity in... more
    Homeodomain transcription factors regulate development of embryos and cellular physiology in adult systems. Paired-type homeodomain genes constitute a subclass that has been particularly implicated in establishment of neuronal identity in the mammalian nervous system. We isolated fragments of eight homeodomain genes of this subclass expressed in the stellate ganglion of the North Atlantic long finned squid Loligo pealei (lp) [Note: Loligo pealei has been officially renamed Doryteuthis pealei. For reasons of uniformity and clarity Loligo pealei (lp) is used here]. Of the most abundant ones, we cloned a full length cDNA which encoded the squid ortholog of the paired-type homeodomain proteins Phox2a/b. The homology of lpPhox2 to invertebrate and mammalian Phox2 was limited to the homeodomain. In contrast to mouse Phox2b, lpPhox2 was unable to transactivate the dopamine beta-hydroxylase (DBH) promoter in a heterologous mammalian transfection system. In vivo, lpPhox2 was expressed in the developing stellate ganglion of stage 27 squid embryos and continued to be expressed in the adult stellate neurons where expression was confined to the giant fiber lobe containing the neurons that form the giant axons. The expression of lpPhox was similarly timed and distributed as the Fmrf gene. Furthermore, the Fmrf upstream region contained putative Phox2a/b binding sites. These results suggest a role of lpPhox2 in the developmental specification of neuronal identity and regulation of neurons of the squid giant axon.
    Multiple lines of evidence link the incidence of diabetes to the development of Alzheimer's disease (AD). Patients with diabetes have a 50 to 75% increased risk of developing AD. Cyclin dependent kinase 5 (Cdk5) is a serine/threonine... more
    Multiple lines of evidence link the incidence of diabetes to the development of Alzheimer's disease (AD). Patients with diabetes have a 50 to 75% increased risk of developing AD. Cyclin dependent kinase 5 (Cdk5) is a serine/threonine protein kinase, which forms active complexes with p35 or p39, found principally in neurons and in pancreatic β cells. Recent studies suggest that Cdk5 hyperactivity is a possible link between neuropathology seen in AD and diabetes. Previously, we identified P5, a truncated 24-aa peptide derived from the Cdk5 activator p35, later modified as TFP5, so as to penetrate the blood-brain barrier after intraperitoneal injections in AD model mice. This treatment inhibited abnormal Cdk5 hyperactivity and significantly rescued AD pathology in these mice. The present study explores the potential of TFP5 peptide to rescue high glucose (HG)-mediated toxicity in rat embryonic cortical neurons. HG exposure leads to Cdk5-p25 hyperactivity and oxidative stress marked...
    A method is proposed to study protein-ligand binding in a system governed by specific and nonspecific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultraweak associations lead... more
    A method is proposed to study protein-ligand binding in a system governed by specific and nonspecific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultraweak associations lead instead to broader distributions, a manifestation of nonspecific, sparsely populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (prerelaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformationa...
    C-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy... more
    C-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy neurofilament subunit (NF-H), including cyclin-dependent protein kinase 5 (CDK5), mitogen-activated protein kinases (MAPKs), casein kinase 1 and 2 (CK1 and CK2) and glycogen synthase kinase 3β (GSK3β). The respective contributions of these kinases have been confounded because they phosphorylate multiple substrates in addition to neurofilaments and display extensive interaction. Herein, differentiated NB2a/d1 cells were transfected with constructs expressing GFP-tagged NF-H, isolated NF-H sidearms and NF-H lacking the distal-most 187 amino acids. Cultures were treated with roscovitine, PD98059, Li(+), D4476, tetrabromobenzotriazole and calyculin, which are active against CDK5, MKK1 (also known as MAP2K1), GSK3β, CK1, CK2 and protein phosphatase 1 (PP1), res...
    Pin1 [Protein Interacting with NIMA (never in mitosis A)] is a peptidyl prolyl cis-trans isomerase that isomerizes phospho-Serine/Threonine-Proline [p(S/T)-P] motifs of its target proteins. Pin1 functions in concert with proline directed... more
    Pin1 [Protein Interacting with NIMA (never in mitosis A)] is a peptidyl prolyl cis-trans isomerase that isomerizes phospho-Serine/Threonine-Proline [p(S/T)-P] motifs of its target proteins. Pin1 functions in concert with proline directed kinases such as cyclin-dependent protein kinases, extracellular signal-regulated kinases, and c-Jun N- terminal kinase, and protein phosphatases such as protein phosphatase 2A (PP2A) and PP2B, in the regulation of a wide range of cellular processes including cell division, DNA damage response, and gene transcription, and in susceptibility to cancer and neurodegenerative diseases. This review focuses on the roles of Pin1 in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Frontotemporal dementia associated with parkinsonism linked to chromosome 17. Pin1 interacts with neuronal cytoskeletal proteins such as tau, amyloid-beta protein precursor, alpha-synuclein, and neurofilaments...
    Neurofilament proteins, a major intermediate filament component of the neuronal cytoskeleton, are organized as 10 nm thick filaments in axons and dendrites. They are large, abundantly phosphorylated proteins with numerous phosphate... more
    Neurofilament proteins, a major intermediate filament component of the neuronal cytoskeleton, are organized as 10 nm thick filaments in axons and dendrites. They are large, abundantly phosphorylated proteins with numerous phosphate acceptor sites, up to 100 in some cases, organized as numerous repeat motifs. Together with other cytoskeletal components such as microtubules, MAPs, actin and plectin-like linking molecules, they make up a dynamic lattice that sustains neuronal function from neuronal "birthday" to apoptotic cell death. The activity of the neuronal cytoskeleton is regulated by phosphorylation, dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Factors regulating multisite phosphorylation of NFs are topographically localized, with maximum phosphorylation of NF proteins consigned to axons. Phosphorylation defines the nature of NF interactions with one another and with other cytoskeletal components such as microt...
    P13suc1 sepharose-conjugated beads were used to extract the kinases that phosphorylate neurofilaments in the squid giant axon. Using Western blots and in vitro kinase assays, we demonstrated the presence of an active cdc2-like kinase and... more
    P13suc1 sepharose-conjugated beads were used to extract the kinases that phosphorylate neurofilaments in the squid giant axon. Using Western blots and in vitro kinase assays, we demonstrated the presence of an active cdc2-like kinase and its putative regulators such as cyclin E, p13, and p67 in axoplasm and a P13-axoplasm complex (P13-Ax). Protein kinase A (PKA) and casein kinase (CK) I and II were also found in the P13-Ax. Western blot analysis of the P13-Ax also demonstrated several axonal cytoskeletal components; e.g., neurofilaments (NFs; NF 60, 70, and 220), tubulin, actin, and microtubule-associated proteins. NF 220 and tubulin were phosphorylated by the kinases in the P13-Ax. To determine whether NFs bound directly to the P13 beads, or bound indirectly by association with cdc2 kinase, a washed, axon-derived neurofilament preparation that contained NFs, PKA, CKl, and tubulin, but no cdc2-like kinase, yielded no bound proteins after incubation with P13suc1. The wash supernatant...
    Calcium-activated protease (CAP) activity was studied in various neural tissues of the squid using endogenous (neurofilament protein) and exogenous ([14C]casein) substrate assays. Both assays demonstrated a significant CAP activity in... more
    Calcium-activated protease (CAP) activity was studied in various neural tissues of the squid using endogenous (neurofilament protein) and exogenous ([14C]casein) substrate assays. Both assays demonstrated a significant CAP activity in perikarya from stellate ganglia, in axoplasm extruded from the giant axon, and in squid retinal fibers. The endogenous protein substrates in the perikarya and axons were 60,000 and 200,000 daltons, respectively. The Km for the CAP degradation of [14C] casein in axoplasm was about 2 x10-6 m. In contrast, both assays detected no CAP activity nor endogenous substrate in nerve terminals (synaptosomes from squid optic lobe). The absence of both CAP activity and endogenous substrate in nerve endings suggests that the axonal neurofilaments are degraded by CAP at the axon-nerve ending junction, followed by an autoinactivation of the CAP. Consistent with this hypothesis is that exposure of axoplasmic CAP to calcium leads to a rapid degradation of axonal neurofi...
    ... All the NF subunits share a tripartite structure typical of IF proteins consisting of highly conserved central alpha helical coil-coiled rod domain flanked by a amino terminal globular head domain and a hyper variable carboxy-terminal... more
    ... All the NF subunits share a tripartite structure typical of IF proteins consisting of highly conserved central alpha helical coil-coiled rod domain flanked by a amino terminal globular head domain and a hyper variable carboxy-terminal tail domain which differ in length among ...
    ... Studies on kinases responsible for phosphorylation of neuronal cytoskeletal pro-teins specifically in their S/TP residues revealed that Cdk5 is one of the principal kinases involved in their phosphorylation (Shetty et al., 1993). ...
    The giant fiber system of the squid Loligo pealei mediates the escape response and is an important neurobiological model. Here, we identified an abundant transcript in the stellate ganglion (SG) that encodes a FMRFamide precursor, and... more
    The giant fiber system of the squid Loligo pealei mediates the escape response and is an important neurobiological model. Here, we identified an abundant transcript in the stellate ganglion (SG) that encodes a FMRFamide precursor, and characterized FMRFamide and FI/LRF-amide peptides. To determine whether FMRFamide plays a role in the adult and hatchling giant fiber system, we studied the expression of the Fmrf gene and FMRFamide peptides. In stage 29 embryos and stage 30 hatchlings, Ffmr transcripts and FMRFamide peptide were low to undetectable in the SG, in contrast to groups of neurons intensely expressing the Fmrf gene in several brain lobes, including those that innervate the SG. In the adult SG the Fmrf gene was highly expressed, but the FMRFamide peptide was in low abundance. Intense staining for FMRFamide in the adult SG was confined to microneurons and fibers in the neuropil and to small fibers surrounding giant axons in stellar nerves. This shows that the Fmrf gene in the...
    ... J. Neurochem. 66, 412-420. 27. Shaw, G., Miller, R., Wang, DS, Tang, D., Hollander, BA, and Bennett, GS (1997). J. Neurochem. 69,1729-1737. 28. ... Lett. 64, 253-258. 37. Zhang, H., Sternberger, NH, Rabinstein, LJ, Herman, MH, Brider,... more
    ... J. Neurochem. 66, 412-420. 27. Shaw, G., Miller, R., Wang, DS, Tang, D., Hollander, BA, and Bennett, GS (1997). J. Neurochem. 69,1729-1737. 28. ... Lett. 64, 253-258. 37. Zhang, H., Sternberger, NH, Rabinstein, LJ, Herman, MH, Brider, LI, and Sternberger, LA (1989). Proc. Natl. ...
    ... Y.-L. Zheng, ND Amin, P. Rudrabhatla, S. Kesavapany, and HC Pant () Cytoskeletal Protein Regulation Section Laboratory of Neurochemistry ... extracellular signal-regulated kinases 1 and 2 ; MAPK : mitogen-activated protein kinase ;... more
    ... Y.-L. Zheng, ND Amin, P. Rudrabhatla, S. Kesavapany, and HC Pant () Cytoskeletal Protein Regulation Section Laboratory of Neurochemistry ... extracellular signal-regulated kinases 1 and 2 ; MAPK : mitogen-activated protein kinase ; Pin1 : protein interacting with NIMA (never in ...
    Cyclin-dependent kinase 5 (Cdk5) in the nervous system has evolved to become a “surveillance system” that, among its other functions, monitors and integrates fluctuations in the activities of signaling cascades involved in nervous system... more
    Cyclin-dependent kinase 5 (Cdk5) in the nervous system has evolved to become a “surveillance system” that, among its other functions, monitors and integrates fluctuations in the activities of signaling cascades involved in nervous system growth, differentiation, and ...
    The intermediate filament protein nestin is characterized by its specific expression during the development of neuronal and myogenic tissues. We identify nestin as a novel in vivo target for cdk5 and p35 kinase, a critical signaling... more
    The intermediate filament protein nestin is characterized by its specific expression during the development of neuronal and myogenic tissues. We identify nestin as a novel in vivo target for cdk5 and p35 kinase, a critical signaling determinant in development. Two cdk5-specific phosphorylation sites on nestin, Thr-1495 and Thr-316, were established, the latter of which was used as a marker for cdk5-specific phosphorylation in vivo. Ectopic expression of cdk5 and p35 in central nervous system progenitor cells and in myogenic precursor cells induced elevated phosphorylation and reorganization of nestin. The kinetics of nestin expression corresponded to elevated expression and activation of cdk5 during differentiation of myoblast cell cultures and during regeneration of skeletal muscle. In the myoblasts, a disassembly-linked phosphorylation of Thr-316 indicated active phosphorylation of nestin by cdk5. Moreover, cdk5 occurred in physical association with nestin. Inhibition of cdk5 acti...
    ... Vitaly Kochin ∗ , † , Hanna-Mari Pallari ∗ , † , Harish Pant ‡ , John E. Eriksson ∗ , †. ... One of the initial approaches to test whether a given cytoskeletal component could be regulated by phosphorylation is usually modification of... more
    ... Vitaly Kochin ∗ , † , Hanna-Mari Pallari ∗ , † , Harish Pant ‡ , John E. Eriksson ∗ , †. ... One of the initial approaches to test whether a given cytoskeletal component could be regulated by phosphorylation is usually modification of the PK⧸PP activities suspected to be involved. ...
    Phosphorylation of neurofilaments has long been considered to regulate their axonal transport rate and, in doing so, to provide stability to mature axons. Interpretation of data recently obtained following C-terminal deletion experiments... more
    Phosphorylation of neurofilaments has long been considered to regulate their axonal transport rate and, in doing so, to provide stability to mature axons. Interpretation of data recently obtained following C-terminal deletion experiments has prompted a challenge to this hypothesis. We present evidence that these deletion studies remain consistent with, rather than refute, a role for C-terminal phosphorylation in regulation of neurofilament axonal transport.
    Weak and ultraweak protein-protein association play a role in molecular recognition and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field... more
    Weak and ultraweak protein-protein association play a role in molecular recognition and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolve. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized on the basis of binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed.
    A protein kinase that phosphorylates a specific KSP sequence [K(S/T)PXK], which is abundant in high molecular weight neurofilament (NF) proteins, was identified and isolated from rat spinal cord. Characterization of this enzyme activity... more
    A protein kinase that phosphorylates a specific KSP sequence [K(S/T)PXK], which is abundant in high molecular weight neurofilament (NF) proteins, was identified and isolated from rat spinal cord. Characterization of this enzyme activity revealed a close relationship with p34cdc2 kinase with respect to its molecular mass (32.5 kDa by SDS/PAGE) and substrate specificities. It could phosphorylate a synthetic peptide analog of the simian virus 40 large tumor antigen, reportedly a specific substrate for p34cdc2 kinase. Histone (H1) and peptide analogs of the KSP sequence present in the C-terminal end of rat and mouse neurofilament proteins were phosphorylated. This kinase did not phosphorylate alpha-casein and peptide substrates of other known second messenger-dependent or -independent kinases. Dephosphorylated rat NF protein NF-H was strongly phosphorylated by the purified enzyme; NF proteins NF-M and native NF-H, but not NF-L, were slightly phosphorylated. Studies on synthetic peptide analogs of KSP repeats with substitution of specific residues, known to be present in the C-terminal regions of NF-H, revealed a consensus sequence of X(S/T)PXK, characteristic of the p34cdc2 kinase substrate. On Western blots, the enzyme was immunoreactive with antibody against the C-terminal end of cdc2 kinase (mouse) and neuronal cdc2-like kinase from rat but not with an antibody against the conserved PSTAIRE region of the p34cdc2 kinase. The antibody against the C-terminal end of cdc2 kinase could immunoprecipitate (immunodeplete) the purified kinase activity. Since the adult nervous system is composed primarily of postmitotic cells, the present observations indicate a nonmitotic role for this cdc2-like kinase activity. The effective phosphorylation of NF-H by this kinase suggests a function in axonal structure.
    Cyclin-dependent kinase 5 (cdk5) is found in an active form only in neuronal cells. Activation by virtue of association with the cyclin-like neuronal proteins p35 (or its truncated form p25) and p39 is the only mechanism currently shown... more
    Cyclin-dependent kinase 5 (cdk5) is found in an active form only in neuronal cells. Activation by virtue of association with the cyclin-like neuronal proteins p35 (or its truncated form p25) and p39 is the only mechanism currently shown to regulate cdk5 catalytic activity. In addition to cyclin binding, other members of the cdk family require for maximal activation phosphorylation of a Ser/Thr residue (Thr(160) in the case of cdk-2) that is conserved in all cdks except cdk8. This site is phosphorylated by cdk-activating kinases, which, however, do not phosphorylate cdk5. To examine the possible existence of a phosphorylation-dependent regulatory mechanism in the case of cdk5, we have metabolically labeled PC12 cells with (32)P(i) and shown that the endogenous cdk5 is phosphorylated. Bacterially expressed cdk5 also can be phosphorylated by PC12 cell lysates. Phosphorylation of cdk5 by a PC12 cell lysate results in a significant increase in cdk5/p25 catalytic activity. Ser(159) in cdk5 is homologous to the regulatory Thr(160) in cdk2. A Ser(159)-to-Ala (S159A) cdk5 mutant did not show similar activation, which suggests that cdk5 is also regulated by phosphorylation at this site. Like other members of the cdk family, cdk5 catalytic activity is influenced by both p25 binding and phosphorylation. We show that the cdk5-activating kinase (cdk5AK) is distinct from the cdk-activating kinase (cyclin H/cdk7) that was reported previously to neither phosphorylate cdk5 nor affect its activity. We also show that casein kinase I, but not casein kinase II, can phosphorylate and activate cdk5 in vitro.
    Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the... more
    Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5-/- embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5-/- brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.

    And 59 more