Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Xuebin Zhang

    The modulation of the full-depth global integrated ocean heat content (GOHC) by El Niño–Southern Oscillation (ENSO) has been estimated in various studies. However, the quantitative results and the mechanisms at work remain uncertain.... more
    The modulation of the full-depth global integrated ocean heat content (GOHC) by El Niño–Southern Oscillation (ENSO) has been estimated in various studies. However, the quantitative results and the mechanisms at work remain uncertain. Here, a dynamically consistent ocean state estimate is utilized to study the large-scale integrated heat content variations during ENSO events for the global ocean. The full-depth GOHC exhibits a cooling tendency during the peak and decaying phases of El Niño, which is a result of the negative surface heat flux (SHF) anomaly in the tropics (30°S–30°N), partially offset by the positive SHF anomaly at higher latitudes. The tropical SHF anomaly acts as a lagged response to damp the convergence of oceanic heat transport, which redistributes heat from the extratropics and the subsurface layers (100–440 m) into the upper tropical oceans (0–100 m) during the onset and peak of El Niño. These results highlight the global nature of the oceanic heat redistribution...
    El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation,... more
    El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.
    Supplementary Information for the Nature Climate Change paper: "Time of emergence for regional sea-level change"
    ABSTRACT Determining the time when the climate change signal from increasing greenhouse gases exceeds and thus emerges from natural climate variability (referred to as the time of emergence, ToE) is an important climate change issue.... more
    ABSTRACT Determining the time when the climate change signal from increasing greenhouse gases exceeds and thus emerges from natural climate variability (referred to as the time of emergence, ToE) is an important climate change issue. Previous ToE studies were mainly focused on atmospheric variables. Here, based on three regional sea-level projection products available to 2100, which have increasing complexity in terms of included processes, we estimate the ToE for sea-level changes relative to the reference period 1986–2005. The dynamic sea level derived from ocean density and circulation changes alone leads to emergence over only limited regions. By adding the lobal-ocean thermal expansion effect, 50% of the ocean area will show emergence with rising sea level by the early-to-middle 2040s. Including additional contributions from land ice mass loss, land water storage change and glacial isostatic adjustment generally enhances the signal of regional sea-level rise (except in some regions with decreasing total sea levels), which leads to emergence over more than 50% of the ocean area by 2020. The ToE for total sea level is substantially earlier than that for surface air temperature and exhibits little dependence on the emission scenarios, which means that our society will face detectable sea-level change and its potential impacts earlier than surface air warming.
    ABSTRACT Changes in sea level are driven by a range of natural and anthropogenic forcings. To better understand the response of global mean thermosteric sea-level change to these forcings, we compare three observational datasets to... more
    ABSTRACT Changes in sea level are driven by a range of natural and anthropogenic forcings. To better understand the response of global mean thermosteric sea-level change to these forcings, we compare three observational datasets to experiments of 28 climate models with up to five different forcing scenarios for 1957–2005. We use the pre-industrial control runs to determine the internal climate variability. Our analysis shows that anthropogenic greenhouse gas and aerosol forcing is required to explain the magnitude of the observed changes, while natural forcing drives most of the externally-forced variability. The experiments that include anthropogenic and natural forcings capture the observed increased trend towards the end of the 20th century best. The observed changes can be explained by scaling the natural-only experiment by 0.70 ± 0.30 and the anthropogenic-only experiment (including opposing forcing from greenhouse gases and aerosols) by 1.08 ± 0.13 (±2σ).
    The westward-flowing North Equatorial Current (NEC) is an important component of the tropical Pacific circulation system. East of the Philippine coast, the NEC bifurcates to form the northward-flowing Kuroshio and the southward-flowing... more
    The westward-flowing North Equatorial Current (NEC) is an important component of the tropical Pacific circulation system. East of the Philippine coast, the NEC bifurcates to form the northward-flowing Kuroshio and the southward-flowing Mindanao Current. The variability of meridional transport within one degree east of the Philippine coast along the mean bifurcation latitude of the NEC (12 degrees N) is examined
    Research Interests:
    The bifurcation of the North Equatorial Current (NEC) plays an important role in the heat and water mass exchanges between the tropical and subtropical gyres in the Pacific Ocean. The variability of western boundary transport (WBT) east... more
    The bifurcation of the North Equatorial Current (NEC) plays an important role in the heat and water mass exchanges between the tropical and subtropical gyres in the Pacific Ocean. The variability of western boundary transport (WBT) east of the Philippine coast at the mean NEC bifurcation latitude (12°N) is examined here. A tropical Pacific regional model is set up based on the Massachusetts Institute of Technology general circulation model and its adjoint, which calculates the sensitivities of a defined meridional transport to atmospheric forcing fields and ocean state going backward in time. The adjoint-derived sensitivity of the WBT at the mean NEC bifurcation latitude to surface wind stress is dominated by curl-like patterns that are located farther eastward and southward with increasing time lag. The temporal evolution of the adjoint sensitivity of the WBT to wind stress resembles wind-forced Rossby wave dynamics but propagating with speeds determined by the background stratific...
    The authors use a new and novel heat balance formalism for the upper 50 m of the Niño-3 region (5°N–5°S, 90°–150°W) to investigate the oceanographic processes underlying interannual sea surface temperature (SST) variations in the eastern... more
    The authors use a new and novel heat balance formalism for the upper 50 m of the Niño-3 region (5°N–5°S, 90°–150°W) to investigate the oceanographic processes underlying interannual sea surface temperature (SST) variations in the eastern equatorial Pacific. The focus is on a better understanding of the relationship between local and remote atmospheric forcing in generating SST anomalies associated with El Niño–Southern Oscillation (ENSO) events. The heat balance analysis indicates that heat advection across 50-m depth and across 150°W are the important oceanic mechanisms responsible for temperature variations with the former being dominant. On the other hand, net surface heat flux adjusted for penetrative radiation damps SST. Jointly, these processes can explain most of interannual variations in temperature tendency averaged over the Niño-3 region. Decomposition of vertical advection across the bottom indicates that the mean seasonal advection of anomalous temperature (the so-called...
    Previous studies have described the impacts of wind stress variations in the eastern Pacific on sea surface temperature (SST) anomalies associated with the El Niño–Southern Oscillation (ENSO) phenomenon. However, these studies have... more
    Previous studies have described the impacts of wind stress variations in the eastern Pacific on sea surface temperature (SST) anomalies associated with the El Niño–Southern Oscillation (ENSO) phenomenon. However, these studies have usually focused on individual El Niño events and typically have not considered impacts on La Niña—the cold phase of the ENSO cycle. This paper examines effects of wind stress and heat flux forcing on interannual SST variations in the eastern equatorial Pacific from sensitivity tests using an ocean general circulation model over the period 1980–2002. Results indicate that in the Niño-3 region (5°N–5°S, 90°–150°W) a zonal wind stress anomaly of 0.01 N m−2 leads to about 1°C SST anomaly and that air–sea heat fluxes tend to damp interannual SST anomalies generated by other physical processes at a rate of about 40 W m−2 (°C)−1. These results systematically quantify expectations from previous event specific numerical model studies that local forcing in the east...
    Vertical advection of temperature is the primary mechanism by which El Niño–Southern Oscillation (ENSO) time-scale sea surface temperature (SST) anomalies are generated in the eastern equatorial Pacific. Variations in vertical advection... more
    Vertical advection of temperature is the primary mechanism by which El Niño–Southern Oscillation (ENSO) time-scale sea surface temperature (SST) anomalies are generated in the eastern equatorial Pacific. Variations in vertical advection are mediated primarily by remote wind-forced thermocline displacements, which control the temperature of water upwelled to the surface. However, during some ENSO events, large wind stress variations occur in the eastern Pacific that in principle should affect local upwelling rates, the depth of the thermocline, and SST. In this study, the impact of these wind stress variations on the eastern equatorial Pacific is addressed using multiple linear regression analysis and a linear equatorial wave model. The regression analysis indicates that a zonal wind stress anomaly of 0.01 N m−2 leads to approximately a 1°C SST anomaly over the Niño-3 region (5°N–5°S, 90°–150°W) due to changes in local upwelling rates. Wind stress variations of this magnitude occurre...
    The evolution of sea surface temperature (SST) over the eastern equatorial Pacific plays a significant role in the intense tropical air–sea interaction there and is of central importance to the El Niño–Southern Oscillation (ENSO)... more
    The evolution of sea surface temperature (SST) over the eastern equatorial Pacific plays a significant role in the intense tropical air–sea interaction there and is of central importance to the El Niño–Southern Oscillation (ENSO) phenomenon. Effects of atmospheric fields (especially wind stress) and ocean state on the eastern equatorial Pacific SST variations are investigated using the Massachusetts Institute of Technology general circulation model (MITgcm) and its adjoint model, which can calculate the sensitivities of a cost function (in this case the averaged 0–30-m temperature in the Niño-3 region during an ENSO event peak) to previous atmospheric forcing fields and ocean state going backward in time. The sensitivity of the Niño-3 surface temperature to monthly zonal wind stress in preceding months can be understood by invoking mixed layer heat balance, ocean dynamics, and especially linear equatorial wave dynamics. The maximum positive sensitivity of the Niño-3 surface temperat...