Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis and Recognition of Music Scores

  • Reference work entry
  • First Online:
Handbook of Document Image Processing and Recognition
  • 3888 Accesses

Abstract

The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andronico A, Ciampa A (1982) On automatic pattern recognition and acquisition of printed music. In: Proceedings of the international computer music conference, Venice, pp 245–278

    Google Scholar 

  2. Bainbridge D, Bell T (1996) An extensible optical music recognition system. In: Proceedings of the nineteenth Australasian computer science conference, Melbourne, pp 308–317

    Google Scholar 

  3. Bainbridge D, Carter N (1997) Automatic reading of music notation. In: Bunke H, Wang PSP (eds) Handbook of character recognition and document image analysis, Chapter 22. World Scientific, Singapore, pp 583–603

    Chapter  Google Scholar 

  4. Baumann S (1995) A simplified attributed graph grammar for high-level music recognition. In: International conference on document analysis and recognition, Montreal, vol 2. IEEE Computer Society, Los Alamitos, pp 1080–1983

    Google Scholar 

  5. Blostein D, Baird HS (1992) A critical survey of music image analysis. In: Baird HS, Bunke H, Yamamoto K (eds) Structured document image analysis. Springer, New York, pp 405–434

    Chapter  Google Scholar 

  6. Bruder I, Ignatova T, Milewski L (2004) Integrating knowledge components for writer identification in a digital archive of historical music scores. In: Proceedings of the 4th ACM/IEEE-CS joint conference on digital libraries (JCDL), Tucson, AZ, USA, pp 397–397

    Google Scholar 

  7. Carter NP (1992) Segmentation and preliminary recognition of madrigals notated in white mensural notation. Mach Vis Appl 5(3):223–229

    Article  Google Scholar 

  8. Carter NP, Bacon RA (1992) Automatic recognition of printed music. In: Baird H, Bunke H, Yamamoto K (eds) Structured document image analysis. Springer, Berlin Heidelberg, pp 456–465

    Chapter  Google Scholar 

  9. Clarke A, Brown B, Thorne MP (1988) Inexpensive optical character recognition of music notation: a new alternative for publishers. In: Computers in music research conference, Bailrigg, Lancaster, pp 84–87

    Google Scholar 

  10. Coüasnon B, Rétif B (1995) Using a grammar for a reliable full score recognition system. In: International computer music conference, Banff, Canada, pp 187–194

    Google Scholar 

  11. Cui J, He H, Wang Y (2010) An adaptive staff line removal in music score images. In: IEEE 10th international conference on signal processing (ICSP), Beijing. IEEE Computer Society, pp 964–967

    Google Scholar 

  12. Dalitz C, Droettboom M, Pranzas B, Fujinaga I (2008) A comparative study of staff removal algorithms. IEEE Trans Pattern Anal Mach Intell 30(5):753–766

    Article  Google Scholar 

  13. Dalitz C, Michalakis GK, Pranzas C (2008) Optical recognition of psaltic byzantine chant notation. Int J Doc Anal Recognit 11(3):143–158

    Article  Google Scholar 

  14. dos Santos Cardoso J, Capela A, Rebelo A, Guedes C, Pinto da Costa J (2009) Staff detection with stable paths. IEEE Trans Pattern Anal Mach Intell 31(6):1134–1139

    Article  Google Scholar 

  15. Droettboom M, MacMillan K, Fujinaga I (2003) The gamera framework for building custom recognition systems. In: Proceedings of the symposium on document image understanding technologies, Greenbelt, Maryland (USA), pp 7–11. Citeseer

    Google Scholar 

  16. Dutta A, Pal U, Fornés A, Lladós J (2010) An efficient staff removal approach from printed musical documents. In: International conference on pattern recognition, Istanbul. IEEE Computer Society, Istambul, Turkey, pp 1965–1968

    Google Scholar 

  17. Escalera S, Fornés A, Pujol O, Radeva P, Sánchez G, Lladós J (2009) Blurred shape model for binary and grey-level symbol recognition. Pattern Recognit Lett 30(15):1424–1433

    Article  Google Scholar 

  18. Escalera S, Fornés A, Pujol O, Lladós J, Radeva P (2011) Circular blurred shape model for multiclass symbol recognition. IEEE Trans Syst Man Cybern B Cybern 41(2):497–506

    Article  Google Scholar 

  19. Fahmy H, Blostein D (1993) A graph grammar programming style for recognition of music notation. Machine Vis Appl 6:83–99. Springer

    Google Scholar 

  20. Fornés A, Lladós J, Sánchez G (2006) Primitive segmentation in old handwritten music scores. In: Liu W, Lladós J (eds) Graphics recognition: ten years review and future perspectives. Volume 3926 of lecture notes in computer science, pp 279–290. Springer, Berlin Heidelberg

    Google Scholar 

  21. Fornés A, Lladós J, Sánchez G, Karatzas D (2010) Rotation invariant hand drawn symbol recognition based on a dynamic time warping model. Int J Doc Anal Recognit 13(3): 229–241

    Article  Google Scholar 

  22. Fornés A, Dutta A, Gordo A, Llados J (2011) The icdar 2011 music scores competition: staff removal and writer identification. In: International conference on document analysis and recognition (ICDAR), Beijin, China. IEEE Computer Society, pp 1511–1515

    Google Scholar 

  23. Fornés A, Dutta A, Gordo A, Lladós J (2012) The 2012 music scores competitions: staff removal and writer identification. In: Kwon Y-B, Ogier J-M (eds) Graphics recognition. New trends and challenges. Lecture notes in computer science, vol 7423. Springer, Berlin/Heidelberg

    Google Scholar 

  24. Fornés A, Dutta A, Gordo A, Lladós J (2012) Cvc-muscima: a ground truth of handwritten music score images for writer identification and staff removal. Int J Doc Anal Recognit 15(3):243–251

    Article  Google Scholar 

  25. Fornés A, Lladós J, Sanchez G, Bunke H (2012) Writer identification in old handwritten music scores. In: Papaodysseus C (ed) Pattern recognition and signal processing in archaeometry: mathematical and computational solutions for archaeology. IGI Global, Hershey, Pennsylvania, USA, pp 27–63

    Chapter  Google Scholar 

  26. Fujinaga I (2004) Staff detection and removal. In: George S (ed) Visual perception of music notation. Idea Group, IRM Press, Hershey PA, USA, pp 1–39

    Google Scholar 

  27. George S (2003) Online pen-based recognition of music notation with artificial neural networks. Comput Music J 27(2):70–79

    Article  Google Scholar 

  28. George S (2005) Visual perception of music notation: on-line and off-line recognition. IRM Press, Hershey PA, USA

    Google Scholar 

  29. Gordo A, Fornes A, Valveny E (2013) Writer identification in handwritten musical scores with bags of notes. Pattern Recognit 46:1337–1345. doi:http://dx.doi.org/10.1016/j.patcog.2012.10.013

    Article  Google Scholar 

  30. Homenda W (2005) Optical music recognition: the case study of pattern recognition. In: Kurzynski M, Puchala E, Wozniak M, Zolnierek A (eds) CORES, advances in soft computing, Rydzyna Castle, Poland. Editorial: Springer, Berlin Heidelberg, vol 30. Springer, pp 835–842

    Google Scholar 

  31. Homenda W, Luckner M (2006) Automatic knowledge acquisition: recognizing music notation with methods of centroids and classifications trees. In: International joint conference on neural networks, Vancouver, Canada. IEEE Computer Society, pp 3382–3388

    Google Scholar 

  32. Kassler M (1972) Optical character recognition of printed music: a review of two disertations. Perspect New Music 11(2):250–254

    Article  Google Scholar 

  33. Kato H, Inokuchi S (1991) A recognition system for printed piano music using musical knowledge and constraints. In: Baird HS, Bunke H, Yamamoto K (eds) Structured document image analysis. Springer, Berlin Heidelberg, pp 435–455

    Google Scholar 

  34. Lee MW, Choi JS (1985) The recognition of printed music score and performance using computer vision system (in Korean and English translation). J Korea Inst Electron Eng 22(5):429–435

    Google Scholar 

  35. Leplumey I, Camillerapp J, Lorette G (1993) A robust detector for music staves. In: Proceedings of the international conference on document analysis and recognition, Tsukuba Science city, Japan, pp 902–905

    Google Scholar 

  36. Luth N (2002) Automatic identification of music notations. In: Proceedings of the second international conference on WEB delivering of music (WEDELMUSIC), Darmstadt, Germany, pp 203–210

    Google Scholar 

  37. Macé S, Anquetil É, Coüasnon B (2005) A generic method to design pen-based systems for structured document composition: development of a musical score editor. In: Proceedings of the 1st workshop on improving and assessing pen-based input techniques, Edinburgh, pp 15–22

    Google Scholar 

  38. Mahoney J (1982) Automatic analysis of musical score images. B.sc. thesis, Massachussets Institute if technology, Dept of Engineering and Computer Science

    Google Scholar 

  39. Matsushima T, Ohteru S, Hashimoto S (1989) An integrated music information processing system: Psb-er. In: Proceedings of the international computer music conference, Columbus pp 191–198

    Google Scholar 

  40. Miyao H, Maruyama M (2007) An online handwritten music symbol recognition system. Int J Doc Anal Recognit 9(1):49–58

    Article  Google Scholar 

  41. Miyao H, Nakano Y (1995) Head and stem extraction from printed music scores using a neural network approach. In: Proceedings of the 3rd international conference on document analysis and recognition, Montreal, Canada, pp 1074–1079

    Google Scholar 

  42. Modayur BR, Ramesh V, Haralick RM, Shapiro LG (1993) Muser: a prototype musical score recognition system using mathematical morphology. Mach Vis Appl 6(2–3):140–150

    Article  Google Scholar 

  43. Ng K (2002) Music manuscript tracing. Blostein D, Kwon Y-B (eds) Graphics Recognition Algorithms and Applications, Volume 2390 of lecture notes in computer science, Springer, Berlin Heidelberg, pp 330–342.

    Google Scholar 

  44. Pinto J, Vieira P, Sosa J (2003) A new graph-like classification method applied to ancient handwritten musical symbols. Int J Doc Anal Recognit (IJDAR) 6(1):10–22

    Article  Google Scholar 

  45. Prerau D (1970) Computer pattern recognition of standard engraved music notation. PhD thesis, Massachussets Institute if technology, Dept of Engineering and Computer Science

    Google Scholar 

  46. Pruslin D (1966) Automatic recognition of sheet music. PhD thesis, Massachussets Institute if technology

    Google Scholar 

  47. Pugin L (2006) Optical music recognition of early typographic prints using hidden markov models. In: International conference on music information retrieval, Victoria, Canada, pp 53–56

    Google Scholar 

  48. Pugin L, Burgoyne JA, Fujinaga I (2007) Goal-directed evaluation for the improvement of optical music recognition on early music prints. In: Rasmussen EM, Larson RR, Toms E, Sugimoto S (eds) Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries, Vancouver, Canada. ACM, pp 303–304

    Google Scholar 

  49. Pugin L, Hockman J, Burgoyne JA, Fujinaga I (2008) GAMERA versus ARUSPIX. Two optical music recognition approaches. In: Proceedings of the 9th international conference on music information retrieval, Philadelphia, USA, pp 419–424

    Google Scholar 

  50. Randriamahefa R, Cocquerez J, Fluhr C, Pépin F, Philipp S (1993) Printed music recognition. In: Proceedings of the international conference on document analysis and recognition, ICDAR, Tsukuba Science city, Japan, pp 898–901

    Google Scholar 

  51. Rebelo A, Capela G, Cardoso J (2010) Optical recognition of music symbols. Int J Doc Anal Recognit 13(1):19–31

    Article  Google Scholar 

  52. Rebelo A, Fujinaga I, Paszkiewicz F, Marcal A, Guedes C, Cardoso J (2012) Optical music recognition: state-of-the-art and open issues. Int J Multimed Inf Retr 1(3):173–190

    Article  Google Scholar 

  53. Roach J, Tatem J (1988) Using domain knowledge in low-level visual processing to interpret handwritten music: an experiment. Pattern Recognit 21(1):33–44

    Article  Google Scholar 

  54. Rossant F, Bloch I (2005) Optical music recognition based on a fuzzy modeling of symbol classes and music writing rules. In: IEEE international conference on image processing, Genova, Italy, vol 2, pp 538–541

    Google Scholar 

  55. Stückelberg MV, Doermann DS (1999) On musical score recognition using probabilistic reasoning. In: Proceedings of the international conference on document analysis and recognition, ICDAR, Bangalore, pp 115–118

    Google Scholar 

  56. Su B, Lu S, Pal U, Tan C (2012) An effective staff detection and removal technique for musical documents. In: IAPR international workshop on document analysis systems (DAS), Gold Coast, Queensland, Australia. IEEE Computer Society, pp 160–164

    Google Scholar 

  57. Toyama F, Shoji K, Miyamichi J (2006) Symbol recognition of printed piano scores with touching symbols. In: International conference on pattern recognition, Hong Kong, vol 2. IEEE Computer Society, pp 480–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Fornés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fornés, A., Sánchez, G. (2014). Analysis and Recognition of Music Scores. In: Doermann, D., Tombre, K. (eds) Handbook of Document Image Processing and Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-859-1_24

Download citation

Publish with us

Policies and ethics