Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Introducing Fractional-Order Dynamics to Sigma–Delta Modulators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The aim of the present paper is to investigate the performance of a fractional-order sigma–delta modulator wherein the integer-order integrator is replaced by a fractional integrator of order \( \alpha \,(1 <\alpha < 2)\). A generalized approach to both linear frequency domain and non-linear time domain modeling and characterization of fractional-order sigma–delta modulator has been discussed. The performance of such modulator has been studied and compared with the corresponding integer-order modulators through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Ahmadi, B. Maundy, A.S. Elwakil, L. Belostotski, High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach. IET Circuits Devices Syst. 6, 187–197 (2012)

    Article  Google Scholar 

  2. P.M. Aziz, H.V. Sorensen, J. van der Spiegel, An overview of sigma-delta converters. Signal Process Mag. IEEE 13, 61–84 (1996)

    Article  Google Scholar 

  3. Y.Q. Chen, K.L. Moore, Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 49, 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  4. A.M.A. El-Sayed, Fractional-order diffusion-wave equations. Int. J. Theor. Phys. 35(2), 311–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Erdelyi, Fractional integrals of generalized functions. Lecture Notes in Mathematics. Fract. Calc. Its Appl. 457, 151–170 (1975)

    Article  MathSciNet  Google Scholar 

  6. T.C. Haba, G. Ablart, T. Camps, The frequency response of a fractal photolithographic structure. IEEE Trans. Dielectr. Electr. Insul. 4(3), 321–326 (1997)

    Article  Google Scholar 

  7. T.C. Haba, G. Ablart, T. Camps, F. Olivie, Influence of the electrical parameters on the input impedance of a fractal structure realized on silicon. Chaos Solitons Fractals 24(2), 479–490 (2005)

    Article  Google Scholar 

  8. T.C. Haba, G.L. Loum, G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension. Chaos Solitons Fractals 33(2), 364–373 (2007)

    Article  Google Scholar 

  9. A. Hussain, A.Q. Naqvi, Fractional curl operator in chiral medium and fractional non-symmetric transmission line. Prog. Electromagn. Res. 59, 199–213 (2006)

    Article  Google Scholar 

  10. W. Kester, J. Bryant, Analog-Digital Conversion. Analog Devices, ISBN 0-916550-27-3, Section 3.3(2004)

  11. J.A.T. Machado, Discrete-time fractional-order controllers. J. FCCA 4, 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  12. R.L. Magin, Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Mondal, K. Biswas, Performance study of fractional order integrator using single-component fractional order element. IET Circuits Devices Syst. 5(4), 334–342 (2011)

    Article  MathSciNet  Google Scholar 

  15. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  16. P. Ostalczyk, Fundamental properties of fractional order discrete time integrator. Signal Process. 83, 2367–2376 (2003)

    Article  MATH  Google Scholar 

  17. S.W. Park, Analytical modeling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38, 8065–8092 (2001)

    Article  MATH  Google Scholar 

  18. I. Podlubny, Fractional Differential Equation (Academic Press, New York, 1999)

    MATH  Google Scholar 

  19. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18(2), 361–386 (2009)

    Article  Google Scholar 

  20. J. Sabatier, O.P. Agarwal, J.A.T. Machado, Advances in Fractional Calculus (Springer, Dordrecht, 2007)

    Book  Google Scholar 

  21. Y. Shang, H. Yu, W. Fei, Design and analysis of CMOS-based terahertz integrated circuits by causal fractional-order RLGC transmission line model. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 355–366 (2013)

    Article  Google Scholar 

  22. M.C. Tripathy, K. Biswas, S. Sen, A design example of a fractional-order Kerwin–Huelsman–Newcomb (KHN) biquad filter with two fractional capacitors of different order. Circuits Syst. Signal Process. 59, 1523–1536 (2013)

    Article  MathSciNet  Google Scholar 

  23. M.C. Tripathy, D. Mondal, K. Biswas, S. Sen, Design and performance study of phase-locked loop using fractional-order loop filter. Int. J. Circuit Theory Appl. 23, 776–792 (2015)

    Article  Google Scholar 

  24. G. Tsirimokou, C. Psychalinos, Ultra-low voltage fractional-order circuits using current mirrors. Int. J. Circuit Theory Appl. (2015). doi:10.1002/cta.2066

    Google Scholar 

  25. T. Wenchang, P. Wenxiao, X. Mingyu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Solids Struct. 38, 645–650 (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sen.

Appendix

Appendix

For fractional-order modulators, \(H_n(e^{j\omega })\) is given by replacing z by \(e^{j\omega }\) in Eq. (10), i.e.

$$\begin{aligned} H_n(e^{j\omega }) = \frac{(1-e^{-j\omega })^\alpha }{e^{-j\omega }+(1-e^{-j\omega })^\alpha }. \end{aligned}$$

Using the fact that if a stationary random process with power spectral density \(P(e^{j\omega })\) is input to a linear filter with transfer function \(H(e^{j\omega })\), the power spectral density of the output process is \(P(e^{j\omega })|H(e^{j\omega })|^2\), the power spectal density of quantization noise at modulator output is given by: \( P_{ny}(e^{j\omega }) = P_n(e^{j\omega })|H_n(e^{j\omega })|^2 \). Assuming white noise process, in-band noise power \(\sigma _{ny}^2 \) at the output of A/D is:

$$\begin{aligned} \sigma _{ny}^2 = \frac{1}{2\pi }\int _{-\omega _B}^{\omega _B}P_n(e^{j\omega })|H_n(e^{j\omega })|^2 \hbox {d}\omega = \frac{\sigma _n^2}{2\pi }\int _{-\omega _B}^{\omega _B}|H_n(e^{j\omega })|^2 \hbox {d}\omega . \end{aligned}$$

Unlike integer-order modulators, neither it is easy to perform the integration directly to get the in-band noise power nor to arrive at a tidy and closed form equation for in-band noise power as a function of oversampling ratio for fractional-order case which leaves only way of numeric integration to perform the task. Despite availability of several techniques, trapezoidal rule has been utilized in this work to perform the integration for its simplicity. After this, putting the values in the definition of SNR we found

$$\begin{aligned} SNR = 10\log \bigg (\frac{\sigma _x^2}{\sigma _{ny}^2}\bigg ) = 10\log \bigg (\frac{\sigma _x^2}{\sigma _e^2}\bigg )-10\log \bigg (\frac{1}{2\pi }\int _{-\omega _B}^{\omega _B}|H_n(e^{j\omega })|^2 \hbox {d}\omega \bigg ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Sen, S. Introducing Fractional-Order Dynamics to Sigma–Delta Modulators. Circuits Syst Signal Process 35, 2109–2124 (2016). https://doi.org/10.1007/s00034-015-0241-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0241-z

Keywords