Abstract
Decades long monitoring of millisecond pulsars, which exhibit highly stable rotational periods in pulsar timing array experiments is on the threshold of discovering nanohertz stochastic gravitational wave background. This paper describes the Indian pulsar timing array (InPTA) experiment, which employs the upgraded Giant Metrewave Radio Telescope (uGMRT) for timing an ensemble of millisecond pulsars for this purpose. We highlight InPTA’s observation strategies and analysis methods, which are relevant for a future PTA experiment with the more sensitive Square Kilometer Array (SKA) telescope. We show that the unique multi-sub-array multi-band wide-bandwidth frequency coverage of the InPTA, provides dispersion measure estimates with unprecedented precision for PTA pulsars, e.g., \(\sim 2 \times 10^{-5}\) pc cm\(^{-3}\) for PSR J1909-3744. Configuring the SKA-low and SKA-mid as two and four sub-arrays, respectively, it is shown that comparable precision is achievable, using observation strategies similar to those pursued by the InPTA, for a larger sample of 62 pulsars, requiring about 26 and 7 h per epoch for the SKA-mid and the SKA-low telescopes, respectively. We also review the ongoing efforts to develop PTA-relevant general relativistic constructs that will be required to search for nanohertz gravitational waves from isolated super-massive black hole binary systems like blazar OJ 287. These efforts should be relevant to pursue persistent multi-messenger gravitational wave astronomy during the forthcoming era of the SKA telescope, the thirty meter telescope, and the next-generation event horizon telescope.
Similar content being viewed by others
Notes
It may be noted that large European array for pulsars (LEAP, Bassa et al. 2016) also uses a phased array of multi-element telescopes, but these form a subset of European pulsar timing array experiment, which is largely based on single dish observations. Another interferometer, which contributes data to European pulsar timing array experiment is the Westerbok synthesis radio telescope. Recently, the MeerTime experiment (Bailes et al. 2016a) has started collecting data with MeerKat, which is also an interferometer. It may be noted that these telescopes have not been used as sub-arrays unlike the uGMRT.
Dispersion measure is defined as the integral of the column density of electrons over the line-of-sight to the pulsar.
References
Abbott B. P., Abbott R., Abbott T. D. et al. 2017a, Nature, 551, 85
Abbott B. P., Abbott R., Abbott T. D. et al. 2017b, Physical Review Letters, 119, 161101
Abbott B. P., Abbott R., Abbott T. D. et al. 2017c, The Astrophysical Journal Letter, 848, L12
Abbott B. P., Abbott R., Abbott T. D. et al. 2019, Physical Review X, 9, 031040
Abbott R., Abbott T. D., Abraham S. et al. 2020, arXiv e-prints, 2010.14527
Abbott R., Abbott T. D., Abraham S. et al. 2021a, Physical Review X, 11, 021053
Abbott R., Abbott T. D., Acernese F. et al. 2021b, arXiv e-prints, 2111.03606
Alam M. F., Arzoumanian Z., Baker P. T. et al. 2021, The Astrophysical Journal Supplement, 252, 5
Anholm M., Ballmer S., Creighton J. D. E., Price L. R., Siemens X. 2009, Physical Review D, 79, 084030
Antoniadis J., Arzoumanian Z., Babak S. et al. 2022, Monthly Notices of the Royal Astronomical Society, 510, 4873
Arimoto M., Asada H., Cherry M. L. et al. 2021, arXiv e-prints, 2104.02445
Arzoumanian Z., Baker P. T., Brazier A. et al. 2018, The Astrophysical Journal, 859, 47
Arzoumanian Z., Baker P. T., Blumer H. et al. 2020, The Astrophysical Journal Letters, 905, L34
Arzoumanian Z., Baker P. T., Brazier A. et al. 2021, The Astrophysical Journal, 914, 121
Bailes M., Barr E., Bhat N. D. et al. 2016a, in Proceedings of Science (Trieste, Italy: Sissa Medialab), 011
Bailes M., Barr E., Bhat N. D. R. et al. 2016b, in MeerKAT Science: On the Pathway to the SKA, 11
Bailes M., Berger B. K., Brady P. R. et al. 2021, Nature Reviews Physics, 3, 344
Banik S., Bandyopadhyay D. 2017, arXiv e-prints, arXiv:1712.09760
Bassa C. G., Janssen G. H., Karuppusamy R. et al. 2016, Monthly Notices of the Royal Astronomical Society, 456, 2196
Blanchet L. 2014, Living Reviews in Relativity, 17, 2
Boran S., Desai S., Kahya E. O., Woodard R. P. 2018, Physical Review D, 97, 041501
Burke-Spolaor S., Taylor S. R., Charisi M. et al. 2019, Astronomy & Astrophysics Reviews, 27, 5
Chen S., Caballero R. N., Guo Y. J. et al. 2021, Monthly Notices of the Royal Astronomical Society, 508, 4970
Cho G., Gopakumar A., Haney M., Lee H. M. 2018, Physical Review D, 98, 024039
Cohen M. 2017, Galaxies, 5, 12
Damour T., Deruelle N. 1986, Ann. Inst. Henri Poincaré Phys. Théor, 44, 263
Damour T., Gopakumar A., Iyer B. R. 2004, Physical Review D, 70, 064028
De K., Gupta Y. 2016, Experimental Astronomy, 41, 67
Desvignes G., Caballero R. N., Lentati L. et al. 2016a, Monthly Notices of the Royal Astronomical Society, 458, 3341
Desvignes G., Caballero R. N., Lentati L. et al. 2016b, Monthly Notices of the Royal Astronomical Society, 458, 3341
Detweiler S. 1979, The Astrophysical Journal, 234, 1100
Dey L., Valtonen M. J., Gopakumar A. et al. 2018, The Astrophysical Journal, 866, 11
Dey L., Gopakumar A., Valtonen M. et al. 2019, Universe, 5, 108
Dey L., Valtonen M. J., Gopakumar A. et al. 2021, Monthly Notices of the Royal Astronomical Society, 503, 4400
Donner J. Y., Verbiest J. P. W., Tiburzi C. et al. 2020, Astronomy & Astrophysics, 644, A153
Edwards R. T., Hobbs G. B., Manchester R. N. 2006, Monthly Notices of the Royal Astronomical Society, 372, 1549
Einstein A. 1918, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), Seite 154-167.
Estabrook F. B., Wahlquist H. D. 1975, General Relativity and Gravitation, 6, 439
Fonseca E., Cromartie H. T., Pennucci T. T. et al. 2021, The Astrophysical Journal Letters, 915, L12
Foster R. S., Backer D. C. 1990, The Astrophysical Journal, 361, 300
Goncharov B., Shannon R. M., Reardon D. J. et al. 2021, The Astrophysical Journal Letters, 917, L19
Gupta Y., Ajithkumar B., Kale H. S. et al. 2017, Current Science, 113, 707
Hellings R. W., Downs G. S. 1983, The Astrophysical Journal Letters, 265, L39
Hobbs G., Dai S. 2017, National Science Review, 4, 707
Hobbs G. B., Edwards R. T., Manchester R. N. 2006, Monthly Notices of the Royal Astronomical Society, 369, 655
Hodgson J. A., Krichbaum T. P., Marscher A. P. et al. 2017, A &A, 597, A80
Hotan A. W., Van Straten W., Manchester R. N. 2004, Publications of the Astronomical Society of Australia, 21, 302
Janssen G., Hobbs G., McLaughlin M. et al. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 37
Johnston S., Sobey C., Dai S. et al. 2021, Monthly Notices of the Royal Astronomical Society, 502, 1253
Joshi B. C., Arumugasamy P., Bagchi M. et al. 2018, Journal of Astrophysics and Astronomy, 39, 51
Keane E. F. 2018, in Pulsar Astrophysics the Next Fifty Years, ed. P. Weltevrede B. B. P. Perera L. L. Preston, & S. Sanidas, Vol. 337, 158–164
Kerr M., Reardon D. J., Hobbs G. et al. 2020, Publications of the Astronomical Society of Australia, 37, e020
Königsdörffer C., Gopakumar A. 2005, Phys. Rev. D, 71, 024039
Kramer M., Stappers B. 2015, in Advancing Astrophysics with the Square Kilometre Array (AASKA14), 36
Krishnakumar M. A., Manoharan P. K., Joshi B. C. et al. 2021, Astronomy & Astrophysics, 651, A5
Laine S., Dey L., Valtonen M. et al. 2020, The Astrophysical Journal Letters, 894, L1
Lam M. T., Ellis J. A., Grillo G. et al. 2018, The Astrophysical Journal, 861, 132
Lee K. J. 2016, in Astronomical Society of the Pacific Conference Series, Vol. 502, Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015, eds Qain L., Li D., 19
Lentati L., Shannon R. M., Coles W. A. et al. 2016, Monthly Notices of the Royal Astronomical Society, 458, 2161
Lorimer D. R. 2011, SIGPROC: Pulsar Signal Processing Programs, ascl:1107.016
Maan Y., van Leeuwen J., Vohl D. 2021, Astronomy & Astrophysics, 650, A80
Manchester R. N., Hobbs G. B., Teoh A., Hobbs M. 2005, AJ, 129, 1993
Manchester R. N., Hobbs G., Bailes M. et al. 2013, Proc. Astr. Soc. Aust., 30, 17
Mapelli M. 2020, Frontiers in Astronomy and Space Sciences, 7, 38
Memmesheimer R.-M., Gopakumar A., Schäfer G. 2004, Physical Review D, 70, 104011
Naidu A., Joshi B. C., Manoharan P. K., Krishnakumar M. A. 2015, Experimental Astronomy, 39, 319
Nice D., Demorest P., Stairs I. et al. 2015, Tempo: Pulsar timing data analysis, ascl:1509.002
Nobleson K., Agarwal N., Girgaonkar R. et al. 2022, Monthly Notices of the Royal Astronomical Society, 512, 1234
O’Neill S., Kiehlmann S., Readhead A. C. S. et al. 2022, The Astrophysical Journal Letters, 926, L35
Pennucci T. T., Demorest P. B., Ransom S. M. 2014, The Astrophysical Journal, 790, 93
Pennucci T. T., Demorest P. B., Ransom S. M. 2016, Pulse Portraiture: Pulsar timing, ascl:1606.013
Pennucci T. T. 2019, The Astrophysical Journal, 871, 34
Perera B. B. P., DeCesar M. E., Demorest P. B. et al. 2019, Monthly Notices of the Royal Astronomical Society, 490, 4666
Phinney E. S. 2001, arXiv e-prints, arXiv: 0108028
Pol N. S., Taylor S. R., Kelley L. Z. et al. 2021, The Astrophysical Journal Letters, 911, L34
Ransom S. 2011, PRESTO: PulsaR Exploration and Search TOolkit, ascl:1107.017
Reddy S. H., Kudale S., Gokhale U. et al. 2017, Journal of Astronomical Instrumentation, 06, 1641011
Sathyaprakash B. S., Schutz B. F. 2009, Living Reviews in Relativity, 12, 2
Sazhin M. V. 1978, Soviet Ast., 22, 36
Soares-Santos M., Palmese A., Hartley W. et al. 2019, The Astrophysical Journal Letters, 876, L7
Susobhanan A., Gopakumar A., Hobbs G., Taylor S. R. 2020, Physical Review D, 101, 043022
Susobhanan A., Maan Y., Joshi B. C. et al. 2021, Proc. Astr. Soc. Aust., 38, e017
Swarup G., Sarma N. V. G., Joshi M. N. et al. 1971, Nature Physical Science, 230, 185
Swarup G., Ananthakrishnan S., Kapahi V. K. et al. 1991, Current Science, 60, 95
Taylor J. H. 1992, Philosophical Transactions of the Royal Society of London Series A, 341, 117
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration et al. 2021a, arXiv e-prints, arXiv:2111.03606
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration et al. 2021b, arXiv e-prints, arXiv:2112.06861
Tiburzi C., Shaifullah G. M., Bassa C. G. et al. 2021, Astronomy & Astrophysics, 647, A84
Valtonen M. J., Dey L., Gopakumar A. et al. 2021, Galaxies, 10, 1
Van Straten W., Bailes M. 2011, Publications of the Astronomical Society of Australia, 28, 1
Verbiest J. P. W., Lentati L., Hobbs G. et al. 2016, Monthly Notices of the Royal Astronomical Society, 458, 1267
Xin C., Mingarelli C. M. F., & Hazboun J. S. 2021, The Astrophysical Journal, 915, 97
Acknowledgements
This work is carried out by InPTA, which is part of the International pulsar timing array consortium. We thank the staff of the GMRT who made our observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. BCJ, PR, AS, SD, LD and YG acknowledge the support of the Department of Atomic Energy, Government of India, under project identification # RTI4002. BCJ and YG acknowledge support from the Department of Atomic Energy, Government of India, under project # 12-R &D-TFR-5.02-0700. AS is supported in part by the National Natural Science Foundation of China Grant No. 11988101.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Special Issue on “Indian Participation in the SKA”
Rights and permissions
About this article
Cite this article
Joshi, B.C., Gopakumar, A., Pandian, A. et al. Nanohertz gravitational wave astronomy during SKA era: An InPTA perspective. J Astrophys Astron 43, 98 (2022). https://doi.org/10.1007/s12036-022-09869-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12036-022-09869-w