Abstract
In this work, we analyze the role of a thin Cr spacer between Fe and Gd layers on the structure and magnetic properties of a [Fe(35 Å)/Cr(tCr)/Gd(50 Å)/Cr(tCr)]12 superlattice. Samples without the Cr spacer (tCr = 0) and with a thin spacer (tCr = 4 Å) are investigated using X-ray diffraction, polarized neutron and resonance X-ray magnetic reflectometry, static magnetometry, magneto-optical Kerr effect, and ferromagnetic resonance techniques. Magnetic properties are studied experimentally in a wide temperature range 4–300 K and analyzed theoretically using numerical simulation on the basis of the mean-field model. We show that a reasonable agreement with the experimental data can be obtained considering temperature dependence of the effective field parameter in gadolinium layers. The analysis of the experimental data shows that besides a strong reduction of the antiferromagnetic coupling between Fe and Gd, the introduction of Cr spacers into Fe/Gd superlattice leads to modification of both structural and magnetic characteristics of the ferromagnetic layers.
Similar content being viewed by others
REFERENCES
R. E. Camley, in Magnetism of Surfaces, Interfaces, and Nanoscale Materials, Vol. 5 of Handbook of Surface Science, Ed. by R. E. Camley, Z. Celinski, and R. L. Stamps (Elsevier, North-Holland, 2015).
R. E. Camley and R. L. Stamps, J. Phys.: Condens. Matter 5, 3727 (1993).
R. E. Camley and D. R. Tilley, Phys. Rev. B 37, 3413 (1988).
R. E. Camley, Phys. Rev. B 39, 12316 (1989).
J. G. LePage and R. E. Camley, Phys. Rev. Lett. 65, 1152 (1990).
R. E. Camley, in Ultrathin Films, Multilayers and Nanostructures, Nanomagnetism, Ed. by D. L. Mills and J. A. C. Bland (Elsevier, Amsterdam, 2006), Vol. 1.
R. E. Camley, Phys. Rev. B 35, 3608 (1987).
N. Ishimatsu, H. Hashizume, S. Hamada, N. Hosoito, C. S. Nelson, C. T. Venkataraman, G. Srajer, and J. C. Lang, Phys. Rev. B 60, 9596 (1999).
N. Hosoito, H. Hashizume, N. Ishimatsu, I.-T. Bae, G. Srajer, J. C. Lang, C. T. Venkataraman, and C. S. Nelson, Jpn. J. Appl. Phys. 41, 1331 (2002).
D. Haskel, G. Srajer, J. C. Lang, J. Pollmann, C. S. Nelson, J. S. Jiang, and S. D. Bader, Phys. Rev. Lett. 87, 207201 (2001).
Y. Choi, D. Haskel, R. E. Camley, D. R. Lee, J. C. Lang, G. Srajer, J. S. Jiang, and S. D. Bader, Phys. Rev. B 70, 134420 (2004).
E. Kravtsov, D. Haskel, S. G. E. te Velthuis, J. S. Jiang, and B. J. Kirby, Phys. Rev. B 79, 134438 (2009).
S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, D. Henze, S. K. Sinha, M.-Y. Im, S. D. Kevan, P. Fischer, B. J. McMorran, V. Lomakin, S. Roy, and E. E. Fullerton, Phys. Rev. B 95, 024415 (2017).
S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, M.-Y. Im, S. D. Kevan, P. Fischer, B. J. Mc-Morran, S. Roy, V. Lomakin, and E. E. Fullerton, Phys. Rev. B 95, 224405 (2017).
S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlir, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Nat. Mater. 13, 286 (2014).
R. Chimata, L. Isaeva, K. Kadas, A. Bergman, B. Sanyal, J. H. Mentink, M. I. Katsnelson, T. Rasing, A. Kirilyuk, A. Kimel, O. Eriksson, and M. Pereiro, Phys. Rev. B 92, 094411 (2015).
C. Xu, T. A. Ostler, and R. W. Chantrell, Phys. Rev. B 93, 054302 (2016).
G. Scheunert, O. Heinonen, R. Hardeman, A. Lapicki, M. Gubbins, and R. M. Bowman, Appl. Phys. Rev. 3, 011301 (2016).
B. Sanyal, C. Antoniak, T. Burkert, B. Krumme, A. Warland, F. Stromberg, C. Praetorius, K. Fauth, H. Wende, and O. Eriksson, Phys. Rev. Lett. 104, 156402 (2010).
F. Stromberg, C. Antoniak, U. von Horsten, W. Keune, B. Sanyal, O. Eriksson, and H. Wende, J. Phys. D: Appl. Phys. 44, 265004 (2011).
A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, E. A. Kravtsov, D. V. Blagodatkov, M. V. Ryabukhina, M. A. Milyaev, V. V. Ustinov, E. M. Pashaev, I. A. Subbotin, and G. V. Prutskov, J. Exp. Theor. Phys. 120, 1041 (2015).
Li Sun, Wen Zhang, Ping Kwan Johnny Wong, Yuli Yin, Sheng Jiang, Zhaocong Huang, Ya Zhai, Zhongyu Yao, Jun Du, Yunxia Sui, and Hongru Zhai, J. Magn. Magn. Mater. 451, 480 (2018).
C. Ward, G. Scheunert, W. R. Hendren, R. Hardeman, M. A. Gubbins, and R. M. Bowman, Appl. Phys. Lett. 102, 092403 (2013).
G. Scheunert, W. R. Hendren, C. Ward, and R. M. Bowman, Appl. Phys. Lett. 101, 142407 (2012).
M. V. Ryabukhina, E. A. Kravtsov, L. I. Naumova, V. V. Proglyado, Yu. N. Khaidukov, and V. V. Ustinov, Phys. Met. Metallogr. 118, 143 (2017).
Modern Techniques for Characterizing Magnetic Materials, Ed. by Y. Zhu (Springer, New York, 2005).
C. Dufour, K. Cherifi, G. Marchal, Ph. Mangin, and M. Hennion, Phys. Rev. B 47, 14572 (1993).
W. Hahn, M. Loewenhaupt, Y. Y. Huang, G. P. Felcher, and S. S. P. Parkin, Phys. Rev. B 52, 16041 (1995).
O. F. K. McGrath, N. Ryzhanova, C. Lacroix, D. Givord, C. Fermon, C. Miramond, G. Saux, S. Young, and A. Vedyayev, Phys. Rev. B 54, 6088 (1996).
S. Roy, M. R. Fitzsimmons, S. Park, M. Dorn, O. Petracic, I. V. Roshchin, Zhi-Pan Li, X. Batlle, R. Morales, A. Misra, X. Zhang, K. Chesnel, J. B. Kortright, S. K. Sinha, and I. K. Schuller, Phys. Rev. Lett. 95, 047201 (2005).
A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, E. A. Kravtsov, M. V. Ryabukhina, V. V. Proglyado, and V. V. Ustinov, J. Phys.: Condens. Matter 29, 115802 (2017).
P. N. Lapa, J. Ding, J. E. Pearson, V. Novosad, J. S. Jiang, and A. Hoffmann, Phys. Rev. B 96, 024418 (2017).
T. D. C. Higgs, S. Bonetti, H. Ohldag, N. Banerjee, X. L. Wang, A. J. Rosenberg, Z. Cai, J. H. Zhao, K. A. Moler, and J. W. A. Robinson, Sci. Rep. 6, 30092 (2016).
K. Takanashi, Y. Kamiguchi, H. Fujimori, and M. Motokawa, J. Phys. Soc. Jpn. 61, 3721 (1992).
N. Hosoito, H. Hashizume, and N. Ishimatsu, J. Phys.: Condens. Matter 14, 5289 (2002).
J. C. Lang and G. Srajer, Rev. Sci. Instrum. 66, 1540 (1995).
D. Haskel, E. Kravtsov, Y. Choi, J. C. Lang, Z. Islam, G. Srajer, J. S. Jiang, S. D. Bader, and P. C. Canfield, Eur. Phys. J. Spec. Top. 208, 141 (2012).
H. E. Nigh, S. Legvold, and F. H. Spedding, Phys. Rev. 132, 1092 (1963).
M. Romera, M. Munoz, M. Maicas, J. M. Michalik, J. M. de Teresa, C. Magen, and J. L. Prieto, Phys. Rev. B 84, 094456 (2011).
S. Handschuh, J. Landes, U. Kobler, Ch. Sauer, G. Kisters, A. Fuss, and W. Zinn, J. Magn. Magn. Mater. 119, 254 (1993).
ACKNOWLEDGMENTS
PNR experiments were performed at the NREX instrument operated by the Max–Planck Society at the Heinz Maier–Leibnitz Zentrum (MLZ), Garching, Germany.
Work at APS is supported by the U.S. Department of Energy (DOE), Office of Science, under Contract no. DE-AC02-06CH11357.
Research in Yekaterinburg was performed in terms of the state assignment of Federal Agency of Scientific Organizations of the Russian Federation (theme “Spin” no. AAAA-A18-118020290104-2). X-ray diffraction measurements were performed at the Collective Use Center of IMP.
The work is partially supported by the Russian Foundation for Basic Research (grants no. 16-02-00061, no. 18-37-00182) and by the Ministry of Education and Science of the Russian Federation (grant no. 14-Z-50.31.0025).
We would like to thank A.A. Mukhin, V.Yu. Ivanov, and A.M. Kuz’menko (GPI RAS) for assistance in performing measurements on a SQUID magnetometer.
Author information
Authors and Affiliations
Corresponding authors
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Drovosekov, A.B., Ryabukhina, M.V., Kholin, D.I. et al. Effect of Cr Spacer on Structural and Magnetic Properties of Fe/Gd Multilayers. J. Exp. Theor. Phys. 127, 742–752 (2018). https://doi.org/10.1134/S1063776118100126
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063776118100126