Abstract
The constraint satisfaction problem can be solved in polynomial time for instances where certain parameters (e.g., the treewidth of primal graphs) are bounded. However, there is a trade-off between generality and performance: larger bounds on the parameters yield worse time complexities. It is desirable to pay for more generality only by a constant factor in the running time, not by a larger degree of the polynomial. Algorithms with such a uniform polynomial time complexity are known as fixed-parameter algorithms.
In this paper we determine whether or not fixed-parameter algorithms for constraint satisfaction exist, considering all possible combinations of the following parameters: the treewidth of primal graphs, the treewidth of dual graphs, the treewidth of incidence graphs, the domain size, the maximum arity of constraints, and the maximum size of overlaps of constraint scopes. The negative cases are subject to the complexity theoretic assumption FPT ≠ W[1] which is the parameterized analog to P ≠ NP. For the positive cases we provide an effective fixed-parameter algorithm which is based on dynamic programming on “nice” tree decompositions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1-2), 1–45 (1998)
Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms
Chen, H., Dalmau, V.: Beyond hypertree width: Decomposition methods without decompositions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 167–181. Springer, Heidelberg (2005)
Cohen, D., Jeavons, P.: The complexity of constraint languages. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, vol. 8. Elsevier, Amsterdam (forthcoming, 2006)
Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction and spread cut decomposition. In: Proc. IJCAI 2005, pp. 72–77 (2005)
Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, part I, ch. 7. Elsevier, Amsterdam (forthcoming, 2006)
Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38(3), 353–366 (1989)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Freuder, E.C.: A sufficient condition for backtrack-bounded search. Journal of the ACM 32(4), 755–761 (1985)
Ganzow, T., Gottlob, G., Musliu, N., Samer, M.: A CSP hypergraph library. Technical Report DBAI-TR-2005-50, Database and Artificial Intelligence Group, Vienna University of Technology (2005)
Gottlob, G., Grohe, M., Musliu, N., Samer, M., Scarcello, F.: Hypertree decompositions: Structure, algorithms, and applications. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 1–15. Springer, Heidelberg (2005)
Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions: a survey. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 37–57. Springer, Heidelberg (2001)
Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. of Computer and System Sciences 64(3), 579–627 (2002)
Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and nonmonotonic reasoning. Artificial Intelligence 138(1-2), 55–86 (2002)
Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proc. SODA 2006, pp. 289–298. ACM, New York (2006)
Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. of Computer and System Sciences 61(2), 302–332 (2000)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)
Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. J. of Computer and System Sciences 58(3), 407–427 (1999)
Reed, B.: Finding approximate separators and computing tree width quickly. In: Proc. STOC 1992, pp. 221–228. ACM, New York (1992)
Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Samer, M., Szeider, S. (2006). Constraint Satisfaction with Bounded Treewidth Revisited. In: Benhamou, F. (eds) Principles and Practice of Constraint Programming - CP 2006. CP 2006. Lecture Notes in Computer Science, vol 4204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889205_36
Download citation
DOI: https://doi.org/10.1007/11889205_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46267-5
Online ISBN: 978-3-540-46268-2
eBook Packages: Computer ScienceComputer Science (R0)