Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bayesian methods for outliers detection in GNSS time series

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This article is concerned with the problem of detecting outliers in GNSS time series based on Bayesian statistical theory. Firstly, a new model is proposed to simultaneously detect different types of outliers based on the conception of introducing different types of classification variables corresponding to the different types of outliers; the problem of outlier detection is converted into the computation of the corresponding posterior probabilities, and the algorithm for computing the posterior probabilities based on standard Gibbs sampler is designed. Secondly, we analyze the reasons of masking and swamping about detecting patches of additive outliers intensively; an unmasking Bayesian method for detecting additive outlier patches is proposed based on an adaptive Gibbs sampler. Thirdly, the correctness of the theories and methods proposed above is illustrated by simulated data and then by analyzing real GNSS observations, such as cycle slips detection in carrier phase data. Examples illustrate that the Bayesian methods for outliers detection in GNSS time series proposed by this paper are not only capable of detecting isolated outliers but also capable of detecting additive outlier patches. Furthermore, it can be successfully used to process cycle slips in phase data, which solves the problem of small cycle slips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abraham B, Box GEP (1979) Bayesian analysis of some outlier problems in time series. Biometrika 66:229–236

    Article  Google Scholar 

  • Ahn YB, Park SB (1991) Estimation of mean frequency and variance of ultrasonic Doppler signal by using second order autoregressive model. IEEE Trans Ultrason Ferroelectr Frequency Control 38:172–182

    Article  Google Scholar 

  • Amiri-Simkooei AR (2009) Noise in multivariate GPS position time series. J Geod 83:175–187

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM (2007) Assessing receiver noise using GPS short baseline time series. GPS Solut 11:21–35

    Article  Google Scholar 

  • Amiri-Simkooei AR, Tiberius CCJM, Teunissen PJG (2007) Assessment of noise in GPS coordinate time series: methodology and results. J Geophys Res 112:B07413

    Article  Google Scholar 

  • Banville S, Langley RB (2010) Instantaneous cycle slip correction for real time PPP applications. J Navig 57(4):325–334

    Google Scholar 

  • Bisnath SB, Langley RB (2000) Efficient automated cycle-slip correction of dual-frequency kinematic GPS data. In: Proceedings of 47th conference of Canadian Aeronautics and Space Institute, pp 121–125.

  • Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202

    Article  Google Scholar 

  • Borghi A, Cannizzaro L, Vitti A (2012) Advanced techniques for discontinuity detection in GNSS coordinate time series: an Italian case study. Int Assoc Geodesy Symp 136:627–633

    Article  Google Scholar 

  • Borre K, Tiberius C (2000) Time series analysis of GPS observables. In: Proceedings of the 13th international technical meeting of the satellite division of The Institute of Navigation (ION GPS 2000), Salt Lake, City, pp 1885–1894.

  • Box GEP, Jenkins GM (1970) Time series analysis, forecasting and control. Holden-Day, San Francisco

    Google Scholar 

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading.

  • De Lacy MC, Reguzzoni M, Sanso F, Venuti G (2008) The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle slip problem. J Geod 82:527–542

    Article  Google Scholar 

  • Ding XL, Zheng DW, Dong DN, Ma C, Chen YQ, Wang GL (2005) Seasonal and secular positional variations at eight collocated GPS and VLBI stations. J Geod 79:71–81

    Article  Google Scholar 

  • Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley, New York

    Book  Google Scholar 

  • Fox AJ (1972) Outliers in time series. J R Stat Soc Ser B 34:350–363

    Google Scholar 

  • Gui Q, Gong Y, Li G, Li B (2007) A Bayesian approach to the detection of gross errors based on posterior probability. J Geod 81:651–659

    Article  Google Scholar 

  • Gui Q, Li X, Gong Y, Li B, Li G (2011) A Bayesian unmasking method for locating multiple gross errors based on posterior probabilities of classification variables. J Geod 85:191–203

    Article  Google Scholar 

  • Harrison PJ, West M (1991) Dynamic linear model diagnostics. Biometrika 78(4):797–808

    Article  Google Scholar 

  • He H, Yang Y (1999) Detection of successive cycle slip for GPS kinematic positioning. Acta Geodaetica et Cartographica Sinica 28(3):199–203 (in Chinese)

    Google Scholar 

  • Justel A, Pena D, Tsay RS (2001) Detection of outlier patches in autoregressive time series. Stat Sinica 11(3):651–673

    Google Scholar 

  • Kenyeres A, Bruyninx C (2004) EPN coordinate time series monitoring for reference frame. GPS Solut 8:200–209

    Article  Google Scholar 

  • King MA, Bevis M, Wilson T, Johns B, Blume F (2012) Monument-antenna effects on GPS coordinate time series with application to vertical rates in Antarctica. J Geod 86:53–63

    Article  Google Scholar 

  • Koch KR (1990) Bayesian inference with geodetic applications. Springer, Berlin

    Google Scholar 

  • Koch KR (2007) Introduction to Bayesian statistics, 2nd edn. Springer, Berlin

  • Koyama Y, Tanaka T (2010) Improvement in accurate GPS positioning using time series analysis. Sice Annual Conference, August, In, pp 18–21

    Google Scholar 

  • Li J, Miyashita K, Kato T, Miyazaki S (2000) GPS time series modeling by autoregressive moving average method: application to the crustal deformation in central Japan. Earth Planet Space 52:155–162

    Google Scholar 

  • Liu JS, Sabatti C (2000) Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87(2):353–369

    Article  Google Scholar 

  • Luo X, Mayer M, Heck B (2011) Verification of ARMA identification for modeling temporal correlations of GNSS observations using the ARMASA toolbox. Stud Geophys Geod 55:537–556

    Article  Google Scholar 

  • Luo X, Mayer M, Heck B (2012) Analysing time series of GNSS residuals by means of AR(I)MA processes. Int Assoc Geodesy Symp 137:129–134

    Article  Google Scholar 

  • Martin RD, Yohai VJ (1986) Influence functionals for time series. Ann Stat 14:781–818

    Article  Google Scholar 

  • McCulloch RE, Tsay RS (1994) Bayesian analysis of autoregressive time series via the Gibbs sampler. J Time Ser Anal 15:235–250

    Article  Google Scholar 

  • Mira J, Sanchez MJ (2004) Prediction of deterministic functions: an application of a Gaussian kriging model to a time series outlier problem. Comput Stat Data Anal 44:477–491

    Article  Google Scholar 

  • Moritz H (1989) Advanced physical geodesy, 2nd edn. Wichmam, Karlsruhe

    Google Scholar 

  • Perfetti N (2006) Detection of station coordinate discontinuities within the Italian GPS Fiducial network. J Geod 80:381–396

    Article  Google Scholar 

  • Sanchez MJ, Pena D (2003) The identification of multiple outliers in ARIMA models. Commun Stat Theory Methods 32:1265–1287

    Article  Google Scholar 

  • Sanso F, Venuti G (1997) Integer variable estimation problems: the Bayesian approach. Ann Geofisica 5XL:1415–1431.

    Google Scholar 

  • Teunissen PJG (1990) An integrity and quality control procedure for use in multi sensor integration. In: Proceedings of ION GPS-90, Colorado Springs, Colorado, USA, 19–21 September, pp 513–522.

  • Teunissen PJG (1990) Quality control in integrated navigation systems. IEEE Aerosp Electron Syst Mag 5(7):35–41

    Article  Google Scholar 

  • Teunissen PJG, Odijk D (2003) Rank defect integer estimation and phase-only modernized GPS ambiguity resolution. J Geod 76:259–268

    Article  Google Scholar 

  • Xu P (1987) A test method for many outliers. ITC J 4:314–317

    Google Scholar 

  • Xu P (1989) Statistical criteria for robust methods. ITC J 1:37–40

    Google Scholar 

  • Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geod 79(10):146–159

    Article  Google Scholar 

  • Yang Y (1991) Robust Bayesian estimation. Bull Geod 65(3):145–150

    Google Scholar 

  • Yang Y, Gao W (2006) A new learning statistic for adaptive filter based on predicted residuals. Prog Nat Sci 16(8):833–837

    Article  Google Scholar 

  • Yang Y, Song L, Xu T (2002) Robust estimation for correlated observations based on bifactor equivalent weights. J Geod 76(6–7):353–358

    Article  Google Scholar 

  • Yang Y, Gao W, Zhang X (2010) Robust Kalman filtering with constraints: a case study for integrated navigation. J Geod 84(6):373–381

    Article  Google Scholar 

  • Zhang Q, Gui Q, Wang Y (2012) Bayesian methods for outliers detection in autoregressive model based on different types of classification variables. Acta Geodaetica et Cartographica Sinica 41(3):378–384 (in Chinese)

    Google Scholar 

  • Zhang Q, Gui Q, Li J, Han S, Gong Y (2012) Bayes method for cycle slips detection based on autoregressive model. In: Proceedings of China satellite navigation conference 2012, vol 160. Springer, pp 317–335.

  • Zhen D, Stefan K, Otmar L (2008) Real time cycle slip detection and determination for multiple frequency GNSS. In: Proceedings of the 5th workplace on positioning, navigation and, communication 2008 (WPNC08), vol 14, pp 37–43.

Download references

Acknowledgments

We are greatly indebted to Editor-in-Chief Pro. Klees, Responsible Editor Dr. Dermanis and reviewers for their very helpful comments, which led to a major improvement of this paper. This research was supported jointly by National Science Foundation of China (No. 40974009, No. 41174005), Planned Research Project of Technology of Zhengzhou City, and Funded Project with youth of Annual Meeting of China’s satellite navigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Qianqian.

Appendix

Appendix

The derivations of the conditional posterior distributions are as follows.

  1. (1)

    According to Bayesian statistical theory (Koch 1990, 2007; Box and Tiao 1973),

    $$\begin{aligned}&p\left( \phi |X,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W^\mathrm{IO}\right) \\&\quad \propto p\left( X|\phi ,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W^\mathrm{IO}\right) \cdot p(\phi )\\&\quad \propto \exp \left\{ {-\frac{1}{2\sigma ^{2}}\sum _{t=p+1}^n {\left( {x_t\!-\!\sum _{i=1}^p {\phi _i y_{t-i} }\!-\!w_t^\mathrm{AO} \delta _t^\mathrm{AO}\!-\!w_t^\mathrm{IO} \delta _t^\mathrm{IO} } \right) ^{2}} } \right\} \cdot \\&\quad \exp \left\{ {-\frac{1}{2}(\phi -\phi _0 )^{T}V(\phi -\phi _0 )} \right\} \\&\quad \propto \exp \left\{ -\frac{1}{2}\left[ \phi ^{T}\left( {V+\frac{1}{\sigma ^{2}}\sum _{t=p+1}^n {Y_{t-1} Y_{t-1}^T } } \right) \phi \right. \right. \\&\qquad -\left. \left. 2\phi ^{T}\left( {\frac{1}{\sigma ^{2}}\sum _{t=p+1}^n {Y_{t-1} (x_t -w_t^\mathrm{AO} \delta _t^\mathrm{AO} -w_t^\mathrm{IO} \delta _t^\mathrm{IO} )} +V\phi _0 } \right) \right] \right\} \end{aligned}$$

    where \(Y_{t-1} =(y_{t-1} ,\ldots ,y_{t-p} )^{T}\). Then, the conditional posterior distribution of \(\phi \) given \(X,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W^\mathrm{IO}\) is

    $$\begin{aligned} \phi |X,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W^\mathrm{IO}\sim N_p \left( \hat{{\phi }}_0 ,\hat{{V}}^{-1}\right) \end{aligned}$$
    (34)

    where \(\hat{{\phi }}_0 =\hat{{V}}^{-1}( \frac{1}{\sigma ^{2}}\sum _{t=p+1}^n Y_{t-1} (x_t -w_t^\mathrm{AO} \delta _t^\mathrm{AO}-w_t^\mathrm{IO} \delta _t^\mathrm{IO} ) +V\phi _0 ),\,\hat{{V}}=V+\frac{1}{\sigma ^{2}}\sum _{t=p+1}^n {Y_{t-1} Y_{t-1}^T } \) Similarly, the following conditional posterior distributions can be obtained.

  2. (2)

    The conditional posterior distribution of \(\sigma ^{2}\) given \(X,\phi ,\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W^\mathrm{IO}\) is

    $$\begin{aligned} \sigma ^{2}|X,\phi ,\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W^\mathrm{IO}\sim IG\left( {\frac{\upsilon _1 }{2},\frac{\upsilon _1 \lambda _1 }{2}} \right) \end{aligned}$$
    (35)

    where \(\upsilon _1 =n-p+\upsilon ,\,\lambda _1 =\frac{1}{n-p+\upsilon }[\sum \nolimits _{t=p+1}^n {(x_t -\sum \nolimits _{i=1}^p {\phi _i y_{t-i} } -w_t^\mathrm{AO} \delta _t^\mathrm{AO} -w_t^\mathrm{IO} \delta _t^\mathrm{IO} )^{2}} +\upsilon \lambda ]\).

  3. (3)

    The conditional posterior distribution of \(\delta _j^\mathrm{AO} ,\delta _j^\mathrm{IO} \) given \(X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} \delta ^\mathrm{IO},W^\mathrm{AO},W^\mathrm{IO}\) is

    $$\begin{aligned} \delta _j^\mathrm{AO} ,\delta _j^\mathrm{IO} |X,\phi ,\sigma ^{2},\delta _{(\!-\!j)}^\mathrm{AO} ,\delta _{(\!-\!j)}^\mathrm{IO} ,W^\mathrm{AO},W^\mathrm{IO}\!\sim \! MN(1,P_j )\nonumber \\ \end{aligned}$$
    (36)

where \(P_j =(P_{1j} ,P_{2j} ,P_{3j} ,P_{4j} )^{T}\) and \(MN(1,P_j )\) denotes the multinomial distribution. In fact,

$$\begin{aligned}&P\left( \delta _j^\mathrm{AO} ,\delta _j^\mathrm{IO} |X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,W^\mathrm{AO},W^\mathrm{IO}\right) \\&\propto \exp \left\{ {-\frac{1}{2\sigma ^{2}}\sum _{t=p+1}^n {\left( {x_t -\sum _{i=1}^p {\phi _i y_{t-i} } -w_t^\mathrm{AO} \delta _t^\mathrm{AO} -w_t^\mathrm{IO} \delta _t^\mathrm{IO} } \right) ^{2}} } \right\} \cdot \\&\alpha _1^{\delta _j^\mathrm{AO} } (1-\alpha _1 )^{1-\delta _j^\mathrm{AO} }\cdot \alpha _2^{\delta _j^\mathrm{IO} } (1-\alpha _2 )^{1-\delta _j^\mathrm{IO} }\\&\propto \exp \left\{ {-\frac{1}{2\sigma ^{2}}\sum _{t=j}^T {\left( {x_t -\sum _{i=1}^p {\phi _i y_{t-i} } -w_t^\mathrm{AO} \delta _t^\mathrm{AO} -w_t^\mathrm{IO} \delta _t^\mathrm{IO} } \right) ^{2}} } \right\} \cdot \\&\alpha ^{\delta _j^\mathrm{AO} }(1-\alpha )^{1-\delta _j^\mathrm{AO} }\cdot \alpha ^{\delta _j^\mathrm{IO} }(1-\alpha )^{1-\delta _j^\mathrm{IO} } \end{aligned}$$

where \(\delta _{(-j)}^\mathrm{AO} =(\delta _1^\mathrm{AO} ,\ldots ,\delta _{j-1}^\mathrm{AO} ,\delta _{j+1}^\mathrm{AO} ,\ldots ,\delta _n^\mathrm{AO} )^{T},\,\delta _{(-j)}^\mathrm{IO} =(\delta _1^\mathrm{IO} ,\ldots ,\delta _{j-1}^\mathrm{IO} ,\delta _{j+1}^\mathrm{IO} ,\ldots ,\delta _n^\mathrm{IO} )^{T},\,T=\min (n,p+j)\). So

$$\begin{aligned}&P\left( \delta _j^\mathrm{AO} =1,\delta _j^\mathrm{IO} =0|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,W^\mathrm{AO},W^\mathrm{IO}\right) \\&\quad \propto \alpha _1 (1\!-\!\alpha _2 )\exp \left\{ \!-\!\frac{1}{2\sigma ^{2}}\left[ \left( {x_j \!-\!\sum _{i=1}^p {\phi _i } y_{j-i} \!-\!w_j^\mathrm{AO} } \right) \right. \right. \\&\qquad +\left. \left. \sum _{t=j+1}^T {\left( {x_t^{*} \!-\!\sum _{i=1}^p {\phi _i x_{t-i}^{*} } \!-\!w_t^\mathrm{IO} \delta _t^\mathrm{IO} \!+\!C_{t-j} w_j^\mathrm{AO} } \right) ^{2}} \right] \right\} \\&P(\delta _j^\mathrm{AO} =0,\delta _j^\mathrm{IO} =1|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,W^\mathrm{AO},W^\mathrm{IO}) \\&\quad \propto \alpha _2 (1\!-\!\alpha _1 )\exp \left\{ \!-\!\frac{1}{2\sigma ^{2}}\left[ \left( x_j \!-\!\sum _{i=1}^p {\phi _i } y_{j-i} \!-\!w_j^\mathrm{IO} \right) \right. \right. \\&\quad +\left. \left. \sum _{t=j+1}^T \left( x_t^{*} \!-\!\sum _{i=1}^p {\phi _i x_{t-i}^{*} } \!-\!w_t^\mathrm{IO} \delta _t^\mathrm{IO} \right) ^{2}\right] \right\} \\&P\left( \delta _j^\mathrm{AO} =1,\delta _j^\mathrm{IO} =1|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,W^\mathrm{AO},W^\mathrm{IO}\right) \\&\quad \propto \alpha _1 \alpha _2 \exp \left\{ \!-\!\frac{1}{2\sigma ^{2}}\left[ \left( x_j \!-\!\sum _{i=1}^p {\phi _i } y_{j-i} \!-\!w_j^\mathrm{AO} \!-\!w_j^\mathrm{IO}\right) \right. \right. \\&\quad +\left. \left. \sum _{t=j+1}^T \left( x_t^{*} \!-\!\sum _{i=1}^p {\phi _i x_{t-i}^{*} } \!-\!w_t^\mathrm{IO} \delta _t^\mathrm{IO} \!+\!C_{t-j} w_j^\mathrm{AO} \right) ^{2}\right] \right\} \\&P\left( \delta _j^\mathrm{AO} =0,\delta _j^\mathrm{IO} =0|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,W^\mathrm{AO},W^\mathrm{IO}\right) \\&\quad \propto (1\!-\!\alpha _1 )(1\!-\!\alpha _2 )\exp \left\{ \!-\!\frac{1}{2\sigma ^{2}}\left[ \left( x_j \!-\!\sum _{i=1}^p {\phi _i } y_{j-i} \right) \right. \right. \\&\qquad +\left. \left. \sum _{t=j+1}^T\left( {x_t^{*} \!-\!\sum _{i=1}^p {\phi _i x_{t-i}^{*}}} \!-\!w_t^\mathrm{IO}\delta _t^\mathrm{IO} \right) ^{2}\right] \right\} \\ \end{aligned}$$

where

$$\begin{aligned} x_t^{*} =\left\{ {\begin{array}{ll} x_t , t=j \\ y_t , t\ne j \\ \end{array}} \right. ,&C_{t-j} =\left\{ {\begin{array}{ll} \phi _{t-j}, &{} t-j=1,\ldots ,p \\ 0, &{} t-j>p \\ \end{array}} \right. \end{aligned}$$

Therefore, according to the characters of the multinomial distribution, we can obtain that

$$\begin{aligned} P_{1j}&= P\left( \delta _j^\mathrm{AO} =1,\delta _j^\mathrm{IO} =0|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,,W^\mathrm{AO},W^\mathrm{IO}\right) \\&= \frac{q_{1j} }{q_{1j} +q_{2j} +q_{3j} +q_{4j} }\\ P_{2j}&= P\left( \delta _j^\mathrm{AO} =0,\delta _j^\mathrm{IO} =1|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,,W^\mathrm{AO},W^\mathrm{IO}\right) \\&= \frac{q_{2j} }{q_{1j} +q_{2j} +q_{3j} +q_{4j} }\\ P_{3j}&= P\left( \delta _j^\mathrm{AO} =1,\delta _j^\mathrm{IO} =1|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,,W^\mathrm{AO},W^\mathrm{IO}\right) \\&= \frac{q_{3j} }{q_{1j} +q_{2j} +q_{3j} +q_{4j} }\\ P_{4j}&= P\left( \delta _j^\mathrm{AO} =0,\delta _j^\mathrm{IO} =0|X,\phi ,\sigma ^{2},\delta _{(-j)}^\mathrm{AO} ,\delta _{(-j)}^\mathrm{IO} ,,W^\mathrm{AO},W^\mathrm{IO}\right) \\&= \frac{q_{4j} }{q_{1j} +q_{2j} +q_{3j} +q_{4j} }\\ \end{aligned}$$

where

$$\begin{aligned}&q_{1j} =\alpha _1 (1\!-\!\alpha _2 )\exp \left\{ -\frac{1}{2\sigma ^{2}}\left[ \left( x_j -\sum _{i=1}^p {\phi _i } y_{j-i} \!-\!w_j^\mathrm{AO} \right) \right. \right. \\&\qquad \quad \!+\left. \left. \sum _{t=j+1}^T \!\left( {x_t^{*} \!-\!\sum _{i=1}^p {\phi _i x_{t-i}^{*} } } \!-\!w_t^\mathrm{IO} \delta _t^\mathrm{IO} +C_{t\!-\!j} w_j^\mathrm{AO} \right) ^{\!2}\right] \right\} \\&q_{2j} =\alpha _2 (1\!-\!\alpha _1 )\exp \left\{ -\frac{1}{2\sigma ^{2}}\left[ \left( x_j -\sum _{i=1}^p {\phi _i } y_{j-i} \!-\!w_j^\mathrm{IO} \right) \right. \right. \\&\qquad \quad +\left. \left. \sum _{t=j+1}^T \left( {x_t^{*} -\sum _{i=1}^p {\phi _i x_{t-i}^{*} } } -w_t^\mathrm{IO} \delta _t^\mathrm{IO} \right) ^{2}\right] \right\} \\&q_{3j} \!=\!\alpha _1 \alpha _2 \exp \left\{ \!-\!\frac{1}{2\sigma ^{2}}\left[ \left( x_j -\sum _{i\!=\!1}^p {\phi _i } y_{j\!-\!i} -w_j^\mathrm{AO} -w_j^\mathrm{IO} \right) \right. \right. \\&\qquad \quad +\left. \left. \sum _{t=j+1}^T \left( {x_t^{*} \!-\!\sum _{i=1}^p {\phi _i x_{t\!-\!i}^{*} } } \!-\!w_t^\mathrm{IO} \delta _t^\mathrm{IO} \!+\!C_{t-j} w_j^\mathrm{AO} \right) ^{2}\right] \right\} \\&q_{4j} \!=\!(1-\alpha _1 )(1-\alpha _2 )\exp \left\{ -\frac{1}{2\sigma ^{2}}\left[ \left( x_j \!-\!\sum _{i=1}^p {\phi _i } y_{j\!-\!i} \right) \right. \right. \\&\qquad \quad +\left. \left. \sum _{t=j+1}^T \left( {x_t^{*} -\sum _{i=1}^p {\phi _i x_{t-i}^{*} } } -w_t^\mathrm{IO} \delta _t^\mathrm{IO} \right) ^{2}\right] \right\} \end{aligned}$$
  1. (4)

    The conditional posterior distribution of \(w_j^\mathrm{AO} \) given \(X,\phi ,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W_{(-j)}^\mathrm{AO} ,W^\mathrm{IO}\) is

    $$\begin{aligned}&w_j^\mathrm{AO} |X,\phi ,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W_{(-j)}^\mathrm{AO}, W^\mathrm{IO}\nonumber \\&\quad \sim N \left( \hat{{w}}_j^\mathrm{AO} ,(\sigma _j^2 )^\mathrm{AO}\right) \end{aligned}$$
    (37)

    where

    $$\begin{aligned}&\hat{{w}}_j^\mathrm{AO} \!=\!\left( \sigma _j^2\right) ^\mathrm{AO}\cdot \left\{ \delta _j^\mathrm{AO} \left[ \left( x_j \!-\!\sum _{i=1}^p {\phi _i y_{j-i} } \!-\!w_j^\mathrm{IO} \delta _j^\mathrm{IO}\right) \right. \right. \\&\quad +\left. \left. \sum _{t=j+1}^T {\phi _{t-j} \left( \sum _{i=1}^p {\phi _i }x_{t-i}^{*} +w_t^\mathrm{IO} \delta _t^\mathrm{IO} -x_t^{*} \right) } \right] +\mu _1 \right\} ,\\&\quad \times \left( \sigma _j^2\right) ^\mathrm{AO}=\left[ \frac{\left( \delta _j^\mathrm{AO}\right) ^{2}}{\sigma ^{2}}\left( 1+\sum _{i=1}^p {\phi _i^2 } \right) +\frac{1}{\sigma ^{2}}\right] ^{-1} \end{aligned}$$
  2. (5)

    The conditional posterior distribution of \(w_j^\mathrm{IO} \) given \(X,\phi ,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W_{(-j)}^\mathrm{IO} \) is

    $$\begin{aligned}&w_j^\mathrm{IO} |X,\phi ,\sigma ^{2},\delta ^\mathrm{AO},\delta ^\mathrm{IO},W^\mathrm{AO},W_{(-j)}^\mathrm{IO}\nonumber \\&\quad \sim N\left( \hat{{w}}_j^\mathrm{IO} ,\left( \sigma _j^2\right) ^\mathrm{IO}\right) \end{aligned}$$
    (38)

    where \(\hat{{w}}_j^\mathrm{IO} =(\sigma _j^2 )^\mathrm{IO}\cdot [\delta _j^\mathrm{IO} (y_j -\sum \limits _{i=1}^p {\phi _i y_{j-i} } )+\mu _2 ], (\sigma _j^2 )^\mathrm{IO}\qquad =[\frac{(\delta _j^\mathrm{IO} )^{2}}{\sigma ^{2}}+\frac{1}{\sigma ^{2}}]^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qianqian, Z., Qingming, G. Bayesian methods for outliers detection in GNSS time series. J Geod 87, 609–627 (2013). https://doi.org/10.1007/s00190-013-0640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-013-0640-5

Keywords