6174
| ||||
---|---|---|---|---|
Cardinal | Six thousand one hundred seventy-four | |||
Ordinal | th | |||
Factorization | ||||
Greek numeral | ,ϚΡΟΔ´ | |||
Roman numeral | VⅯCLXXIV | |||
Binary | 11000000111102 | |||
Ternary | 221102003 | |||
Quaternary | 12001324 | |||
Quinary | 1441445 | |||
Senary | 443306 | |||
Octal | 140368 | |||
Duodecimal | 36A612 | |||
Hexadecimal | 181E16 | |||
Vigesimal | F8E20 | |||
Base 36 | 4RI36 |
6174 എന്ന സംഖ്യ കപ്രേക്കർ സംഖ്യ എന്ന് അറിയപ്പെടുന്നു. മഹാരാഷ്ട്രയിലെ നാസിക്കിൽ ദീർഘകാലം സ്കൂൾ അദ്ധ്യാപകനായിരുന്ന ഡി. ആർ. കപ്രേക്കർ (1905 - 1986) ആണ് ഈ സംഖ്യയുടെ പ്രത്യേകത കണ്ടെത്തിയത്.[1][2][3]
6174 ന്റെ പ്രത്യേകത
[തിരുത്തുക]ഒരേ അക്കങ്ങൾ ആവർത്തിക്കുന്നവ (അതായതു് 1111, 2222, 3333....9999) ഒഴികെ നാലക്കമുള്ള ഏതു സംഖ്യയിയിന്മേലും കപ്രേക്കർ ക്രിയ എന്നറിയപ്പെടുന്ന പ്രത്യേക ഗണിതക്രിയ ചെയ്യുമ്പോൾ ഏറ്റവും കൂടിയതു് ഏഴു ഘട്ടങ്ങൾ കഴിഞ്ഞാൽ ഫലമായി ലഭിക്കുന്നതു് 6174 ആയിരിക്കും.
കപ്രേക്കർ ക്രിയ
[തിരുത്തുക]- ഒരേ അക്കം ആവർത്തിക്കാത്ത നാല് അക്കമുള്ള ഒരു സംഖ്യ പരിഗണിക്കുക.
- അതിലെ അക്കങ്ങളെടുത്ത് അവരോഹണക്രത്തിലെഴുതി ഒരു പുതിയ സംഖ്യ ഉണ്ടാക്കുക.
- ഈ സംഖ്യയിലെ അക്കങ്ങളെ വിപരീതക്രമത്തിലെഴുതി രണ്ടാമതൊരു സംഖ്യ ഉണ്ടാക്കുക.
- അവസാനമെമഴുതിയ രണ്ടുസംഖ്യകൾ തമ്മിലുള്ള വ്യത്യാസം കാണുക.
- കിട്ടുന്ന സംഖ്യയിലെ അക്കങ്ങളെ അവരോഹണക്രമത്തിലെഴുതി നേരത്തെ ചെയ്ത ക്രിയ പലവട്ടം ആവർത്തിക്കുക.
- ഏഴു തവണ ഇങ്ങനെ ചെയ്യുന്നതിനിടയിൽ ഫലം "6174" എന്ന സംഖ്യയിൽ സംവ്രജിക്കുന്നതായി കാണാം. ആരംഭത്തിലുള്ള സംഖ്യ ഏതുതന്നെയായാലും അവസാനിക്കുന്നത് "6174" ൽ ആയിരിക്കും.
ഏതു സംഖ്യ എടുത്താലും "6174" ൽ എത്തിച്ചേരാൻ പരമാവധി ഏഴു പ്രാവശ്യത്തിൽ കൂടുതൽ ക്രിയ ചെയ്യേണ്ടിവരില്ലെന്ന് കാണാം. അതുകൂടാതെ, ഓരോ ഘട്ടത്തിലും ലഭിക്കുന്ന രണ്ടു സംഖ്യകളിലെ അക്കങ്ങളുടെ തുക ഒരേ പോലെയായതിനാൽ അവ തമ്മിലുള്ള വ്യത്യാസം എപ്പോഴും ഒമ്പതിന്റെ ഗുണിതങ്ങളായിരിക്കും.
മൂന്നക്കമുള്ള സംഖ്യകൾക്കുള്ള കപ്രേക്കർ സമാനസംഖ്യ
[തിരുത്തുക]മൂന്നക്കമുള്ള സംഖ്യകൾക്കും പ്രത്യേകത കണ്ടെത്തിയിട്ടുണ്ടു്. അവയുടെ കാര്യത്തിൽ സംവ്രജിക്കുന്ന സമാനസംഖ്യ 495 ആണു്.
അഞ്ചോ അതിലധികമോ അക്കങ്ങളുള്ള സംഖ്യകൾ
[തിരുത്തുക]ഇത്തരം സംഖ്യകൾക്കു് കപ്രേക്കർ സംഖ്യയ്ക്കു സമാനമായി ഒരേ ഒരു സംഖ്യയായി (അനന്യമായി) ഇല്ല. സംഖ്യയിലെ അക്കങ്ങളുടെ എണ്ണം അനുസരിച്ച് ഒന്നുകിൽ ഒന്നിലധികം (പക്ഷേ നിശ്ചിതമായ സംഖ്യകളിൽ) സംവ്രജിക്കുകയോ അല്ലെങ്കിൽ ചാക്രികമായി ആവർത്തിച്ചുകൊണ്ടിരിക്കുന്ന നിശ്ചിത ശ്രേണികളിൽ പെട്ടുപോവുകയോ ചെയ്യാം.
ചില ഉദാഹരണങ്ങൾ
[തിരുത്തുക]ഉദാഹരണം 1
[തിരുത്തുക]ആരംഭ സംഖ്യയായി 3524 എടുക്കുക. അക്കങ്ങൾ അവരോഹണക്രത്തിലെഴുതുമ്പോൾ 5432 എന്ന് ലഭിക്കുന്നു.
5432 – 2345 = 3087 8730 – 0378 = 8352 8532 – 2358 = 6174
ഉദാഹരണം 2
[തിരുത്തുക]ആരംഭ സംഖ്യയായി 1121 എടുക്കുക. അക്കങ്ങൾ അവരോഹണക്രത്തിലെഴുമ്പോൾ 2111 എന്ന് ലഭിക്കുന്നു.
2111 – 1112 = 0999 9990 – 0999 = 8991 9981 – 1899 = 8082 8820 – 0288 = 8532 8532 – 2358 = 6174
ഉദാഹരണം 3
[തിരുത്തുക]ആരംഭ സംഖ്യയായി 3891 എടുക്കുക. അക്കങ്ങൾ അവരോഹണക്രത്തിലെഴുതുമ്പോൾ 9831എന്ന് ലഭിക്കുന്നു. (ഇത് 7 പ്രാവശ്യം ക്രിയ ചെയ്യെണ്ട ഒരു സംഖ്യ യാണ്.)
9831 - 1389 = 8442 8442 - 2448 = 5994 9954 - 4599 = 5355 5553 - 3555 = 1998 9981 - 1899 = 8082 8820 - 0288 = 8532 8532 - 2358 = 6174
പുറത്തേക്കുള്ള കണ്ണികൾ
[തിരുത്തുക]അവലംബം
[തിരുത്തുക]- ↑ 6174 എന്ന മാന്ത്രികസംഖ്യ
- ↑ ഡി.ആർ. കപ്രേക്കർ (1955). "6174 എന്ന സംഖ്യയുടെ രസകരമായ ഒരു പ്രത്യേകത". Scripta Mathematica. 15: 244–245.
- ↑ ഡി.ആർ. കപ്രേക്കർ (1980). "കപ്രേക്കർ സംഖ്യകളെപ്പറ്റി". Journal of Recreational Mathematics. 13 (2): 81–82.