Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kevin Grady

We investigated early survival, growth, and carbon isotope discrimination of ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) seedlings from different provenances using common gardens across an elevational... more
We investigated early survival, growth, and carbon isotope discrimination of ponderosa pine (Pinus ponderosa Lawson & C. Lawson var. scopulorum Engelm.) seedlings from different provenances using common gardens across an elevational gradient in order to examine the potential for adaptation to extreme environments and constraints to artificial regeneration. Twenty-one provenances from a range of elevations across Arizona and New Mexico were planted in three common gardens: a high-elevation meadow in aspen-mixed conifer forest, a mid-elevation ponderosa pine forest, and a low-elevation pinyon juniper woodland. Two years after planting in 2018, survival was highest at the mid-elevation site (54%), low at the high-elevation site (1.5%), and 0% at the low-elevation site. At the hot and dry low-elevation site, provenances from low-elevations survived longer than provenances from mid- and high-elevations, which suggests greater drought tolerance of low-elevation provenances. Mortality agen...
Climate change, particularly increased aridity, poses a significant threat to plants and the biotic communities they support. Dioecious species may be especially vulnerable to climate change given that they often exhibit spatial... more
Climate change, particularly increased aridity, poses a significant threat to plants and the biotic communities they support. Dioecious species may be especially vulnerable to climate change given that they often exhibit spatial segregation of the sexes, reinforced by physiological and morphological specialization of each sex to different microhabitats. In dimorphic species, the overexpression of a trait by one gender versus the other may become suppressed in future climates. Data suggest that males will generally be less sensitive to increased aridity than co-occurring females and, consequently, extreme male-biased sex ratios are possible in a significant number of populations. The effects of male-biased sex ratios are likely to cascade to dependent community members, especially those that are specialized on one sex.
ABSTRACT 1. Plant functional traits involved in carbon and water acquisition are likely to be adaptive across the range of a species if the availability of these resources varies across this range and are limiting to growth or fitness. At... more
ABSTRACT 1. Plant functional traits involved in carbon and water acquisition are likely to be adaptive across the range of a species if the availability of these resources varies across this range and are limiting to growth or fitness. At the interspecific level, leaf economic traits associated with rapid resource capture are correlated with fast growth rates. However, relationships between leaf traits and growth are poorly understood at the intraspecific level. 2. We examined two hypotheses: (i) leaf traits vary genotypically among Populus fremontii populations from different thermal environments; and (ii) leaf traits are related to growth rate of these P. fremontii populations. We used a common garden at the warm edge of P. fremontii distribution that included individuals transplanted from 11 provenances. Provenances varied in mean annual maximum temperature by 5Á9 °C, reflecting a range of expected increases in temperature over the next 80 years. 3. Conservative leaf traits (e.g. low specific leaf area, N content, stomatal conductance, net
ABSTRACT
We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we... more
We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B). Four major findings emerged. 1) Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2) Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3) Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by...
Urban biodiversity conservation needs a firm scientific foundation, one that draws upon active and regionally calibrated research programs. Until recently this foundation has not existed. In this paper we examine the way in which the... more
Urban biodiversity conservation needs a firm scientific foundation, one that draws upon active and regionally calibrated research programs. Until recently this foundation has not existed. In this paper we examine the way in which the emerging discipline of restoration ecology in an urban context can learn from the experiences of ongoing restoration projects and in turn how novel insights from
ABSTRACT Ant–acacia mutualisms are conspicuous biotic associations in Savannah and neotropical ecosystems; however, the effects of tree size and forest structure on ant behaviour and tree traits are rarely examined. We tested two... more
ABSTRACT Ant–acacia mutualisms are conspicuous biotic associations in Savannah and neotropical ecosystems; however, the effects of tree size and forest structure on ant behaviour and tree traits are rarely examined. We tested two hypotheses related to these effects: (1) ant responses to disturbance are influenced by tree size and forest basal area; and (2) tree traits important to ants are predictable by tree size and forest basal area. We investigated these hypotheses in a dry tropical forest (Ometepe Island, Nicaragua) with the myrmecophytic Collins acacia (Vachellia collinsii Saff.) and the ant Pseudomyrmex spinicola (Emery 1890). We measured trees from three size classes and three basal area classes and quantified resources that are important for ants, including food resources (nectaries and Beltian bodies) and domiciles (thorns), as well as a measure of potential tree reproductive fitness (seedpods). We also evaluated ant responses to experimental disturbances. Three important findings emerged: (1) on average, 1140–1173% more ants responded to experimental disturbances of large trees than small- or intermediate-sized trees, respectively; (2) forest basal area did not affect ant responses to disturbance; and (3) neither tree size nor forest basal area was correlated with branch-level mean numbers of nectaries, food bodies or thorns. Our studies support the hypothesis that tree size is an important factor regarding ant behavioural responses to disturbance, but not forest basal area. Our work suggests that future studies of ant behaviour on myrmecophytes should consider tree size.