Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Sandrine Rousseaux

    Different genera and/or species of yeasts present on grape berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not... more
    Different genera and/or species of yeasts present on grape berries, in musts and wines are widely described. Nevertheless, the community of non-Saccharomyces yeasts present in the cellar is still given little attention. Thus it is not known if the cellar is a real ecological niche for these yeasts or if it is merely a transient habitat for populations brought in by grape berries during the winemaking period. This study focused on three species of non-Saccharomyces yeasts commonly encountered during vinification: Starmerella bacillaris (synonymy with Candida zemplinina), Hanseniaspora guilliermondii and Hanseniaspora uvarum. More than 1200 isolates were identified at the strain level by FT-IR spectroscopy (207 different FTIR strain pattern). Only a small proportion of non-Saccharomyces yeasts present in musts came directly from grape berries for the three species studied. Some strains were found in the must in two consecutive years and some of them were also found in the cellar environment before the arrival of the harvest of second vintage. This study demonstrates for the first time the persistence of non-Saccharomyces yeast strains from year to year in the cellar. Sulfur dioxide can affect yeast populations in the must and therefore their persistence in the cellar environment.
    Research Interests:
    Isolated yeast populations of Chardonnay grape must during spontaneous fermentation were compared to those isolated on grape berries and in a winery environment before the arrival of the harvest (air, floor, winery equipment) and in the... more
    Isolated yeast populations of Chardonnay grape must during spontaneous fermentation were compared to those isolated on grape berries and in a winery environment before the arrival of the harvest (air, floor, winery equipment) and in the air through time. Two genera of yeast, Hanseniaspora and Saccharomyces, were isolated in grape must and in the winery environment before the arrival of the harvest but not on grape berries. The genus Hanseniaspora represented 27% of isolates in the must and 35% of isolates in the winery environment. The isolates of these two species were discriminated at the strain level by Fourier transform infrared spectroscopy. The diversity of these strains observed in the winery environment (26 strains) and in must (12 strains) was considerable. 58% of the yeasts of the genus Hanseniaspora isolated in the must corresponded to strains present in the winery before the arrival of the harvest. Although the proportion and number of strains of the genus Hanseniaspora ...
    Most fermented products are generated by a mixture of microbes. These microbial consortia possess various biological activities responsible for the nutritional, hygienic, and aromatic qualities of the product. Wine is no exception.... more
    Most fermented products are generated by a mixture of microbes. These microbial consortia possess various biological activities responsible for the nutritional, hygienic, and aromatic qualities of the product. Wine is no exception. Substantial yeast and bacterial biodiversity is observed on grapes, and in both must and wine. The diverse microorganisms present interact throughout the winemaking process. The interactions modulate the hygienic and sensorial properties of the wine. Many studies have been conducted to elucidate the nature of these interactions, with the aim of establishing better control of the two fermentations occurring during wine processing. However, wine is a very complex medium making such studies difficult. In this review, we present the current state of research on microbial interactions in wines. We consider the different kinds of interactions between different microorganisms together with the consequences of these interactions. We underline the major challenges...
    We have studied the structural effects of application to the soil of a potentially detrimental herbicide, 4,6-dinitroorthocresol (DNOC) by analysing amplified ribosomal DNA restriction analysis (ARDRA) and terminal restriction fragment... more
    We have studied the structural effects of application to the soil of a potentially detrimental herbicide, 4,6-dinitroorthocresol (DNOC) by analysing amplified ribosomal DNA restriction analysis (ARDRA) and terminal restriction fragment length polymorphism (T-RFLP) signatures of 16S rDNA fragments of culturable bacterial communities isolated from diluted soil suspensions. This approach has the potential to reveal changes induced by stressing the soil
    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year,... more
    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron+metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching.
    A PCR-restriction fragment length polymorphism (RFLP) method was developed in order to screen a large number of strains for impaired adhesion to epithelial cells due to expression of truncated InlA. inlA polymorphism was analyzed by... more
    A PCR-restriction fragment length polymorphism (RFLP) method was developed in order to screen a large number of strains for impaired adhesion to epithelial cells due to expression of truncated InlA. inlA polymorphism was analyzed by PCR-RFLP in order to correlate inlA PCR-RFLP profiles and production of truncated InlA. Thirty-seven Listeria monocytogenes strains isolated from various sources, including five noninvasive and two invasive reference strains, were screened. Two endonucleases (AluI and Tsp509I) were used, and they generated five composite profiles. Thirteen L. monocytogenes isolates were characterized by two specific PCR-RFLP profiles similar to PCR-RFLP profiles of noninvasive reference strains previously described as strains that produce truncated InlA. Ten of the 13 isolates showed low abilities to invade human epithelial Caco-2 cells. However, 4 of the 13 isolates were able to invade Caco-2 cells like reference strains containing complete InlA. Sequencing of inlA and Western blot analysis confirmed that truncated InlA was expressed in the 10 L. monocytogenes strains which were isolated from food. This PCR-RFLP method allowed us to identify 10 new strains expressing a truncated internalin. Based on the results obtained in this study, the PCR-RFLP method seems to be an interesting method for rapidly screening L. monocytogenes strains deficient in the ability to invade Caco-2 cells when a sizeable number of strains are studied.
    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present indifferentmust sampleswas examined. Infirst, the capacity of the technique FT-IRto study the global... more
    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present indifferentmust sampleswas examined. Infirst, the capacity of the technique FT-IRto study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia)wereidentified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrose- quencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of thempresentorganoleptic potentials inwinemaking,particularly Starmerella bacillaris (synonym Candida zemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in themusts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.
    Research Interests: