Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Erik Andersen
  • Department of Molecular Biosciences
    Northwestern University
    Cook 3125
    2205 Tech Dr.
    Evanston, IL 60208-3500
  • 847-467-4382

Erik Andersen

The Hawaiian strain (CB4856) of Caenorhabditis elegans is one of the most divergent from the canonical laboratory strain N2 and has been widely used in developmental, population and evolutionary studies. To enhance the utility of the... more
The Hawaiian strain (CB4856) of Caenorhabditis elegans is one of the most divergent from the canonical laboratory strain N2 and has been widely used in developmental, population and evolutionary studies. To enhance the utility of the strain, we have generated a draft sequence of the CB4856 genome, exploiting a variety of resources and strategies. The CB4856 genome when compared against the N2 reference has 327,050 single nucleotide variants (SNVs) and 79,529 insertion-deletion events (indels) that result in a total of 3.3 megabasepairs (Mb) of N2 sequence missing from CB4856 and 1.4 Mb of sequence present in CB4856 not present in N2. As previously reported, the density of SNVs varies along the chromosomes, with the arms of chromosomes showing greater average variation than the centers. In addition, we find 61 regions totaling 2.8 Mb, distributed across all six chromosomes, that have a greatly elevated SNV density, ranging from 2% to 16% SNVs. A survey of other wild isolates show tha...
The genetic variants underlying complex traits are often elusive even in powerful model organisms such as Caenorhabditis elegans with controlled genetic backgrounds and environmental conditions. Two major contributing factors are: (1) the... more
The genetic variants underlying complex traits are often elusive even in powerful model organisms such as Caenorhabditis elegans with controlled genetic backgrounds and environmental conditions. Two major contributing factors are: (1) the lack of statistical power from measuring the phenotypes of small numbers of individuals, and (2) the use of phenotyping platforms that do not scale to hundreds of individuals and are prone to noisy measurements. Here, we generated a new resource of 359 recombinant inbred strains that augments the existing C. elegans N2xCB4856 recombinant inbred advanced intercross line population. This new strain collection removes variation in the neuropeptide receptor gene npr-1, known to have large physiological and behavioral effects on C. elegans and mitigates the hybrid strain incompatibility caused by zeel-1 and peel-1, allowing for identification of quantitative trait loci that otherwise would have been masked by those effects. Additionally, we optimized hi...
Microbial pathogens impose selective pressures on their hosts, and combatting these pathogens is fundamental to the propagation of a species. Innate immunity is an ancient system that provides the foundation for pathogen resistance, with... more
Microbial pathogens impose selective pressures on their hosts, and combatting these pathogens is fundamental to the propagation of a species. Innate immunity is an ancient system that provides the foundation for pathogen resistance, with epithelial cells in humans increasingly appreciated to play key roles in innate defense. Here, we show that the nematode C. elegans displays genetic variation in epithelial immunity against intestinal infection by its natural pathogen, Nematocida parisii. This pathogen belongs to the microsporidia phylum, which comprises a large phylum of over 1400 species of fungal-related parasites that can infect all animals, including humans, but are poorly understood. Strikingly, we find that a wild C. elegans strain from Hawaii is able to clear intracellular infection by N. parisii, with this ability restricted to young larval animals. Notably, infection of older larvae does not impair progeny production, while infection of younger larvae does. The early-life ...
A variety of applications require the creation of custom-designed plasmids, including transgenic reporters, heterologous gene fusions, and phenotypic rescue plasmids. These plasmids are created traditionally using restriction digests and... more
A variety of applications require the creation of custom-designed plasmids, including transgenic reporters, heterologous gene fusions, and phenotypic rescue plasmids. These plasmids are created traditionally using restriction digests and in vitro ligation reactions, but these techniques are dependent on available restriction sites and can be laborious given the size and number of fragments to be ligated. The baker's yeast Saccharomyces cerevisiae provides a powerful platform to create nearly any plasmid through PCR-directed yeast-mediated ligation. This technique can ligate complex plasmids of up to 50 kilobasepairs (kb) in vivo to produce plasmids with precisely defined sequences.
Cellular structures such as the nucleus, Golgi, centrioles, and spindle show remarkable diversity between species, but the mechanisms that produce these variations in cell biology are not known. Here we investigate the mechanisms that... more
Cellular structures such as the nucleus, Golgi, centrioles, and spindle show remarkable diversity between species, but the mechanisms that produce these variations in cell biology are not known. Here we investigate the mechanisms that contribute to variations in morphology and dynamics of the mitotic spindle, which orchestrates chromosome segregation in all Eukaryotes and positions the division plane in many organisms. We use high-throughput imaging of the first division in nematodes to demonstrate that the measured effects of spontaneous mutations, combined with stabilizing selection on cell size, are sufficient to quantitatively explain both the levels of within-species variation in the spindle and its diversity over ∼100 million years of evolution. Furthermore, our finding of extensive within-species variation for the spindle demonstrates that there is not just one "wild-type" form, rather that cellular structures can exhibit a surprisingly broad diversity of naturally occurring behaviors. Our results argue that natural selection acts predominantly on cell size and indirectly influences the spindle through the scaling of the spindle with cell size. Previous studies have shown that the spindle also scales with cell size during early development. Thus, the scaling of the spindle with cell size controls its variation over both ontogeny and phylogeny.
Understanding the genetic basis of susceptibility to pathogens is an important goal of medicine and of evolutionary biology. A key first step toward understanding the genetics and evolution of any phenotypic trait is characterizing the... more
Understanding the genetic basis of susceptibility to pathogens is an important goal of medicine and of evolutionary biology. A key first step toward understanding the genetics and evolution of any phenotypic trait is characterizing the role of mutation. However, the rate at which mutation introduces genetic variance for pathogen susceptibility in any organism is essentially unknown. Here, we quantify the per-generation input of genetic variance by mutation (VM) for susceptibility of Caenorhabditis elegans to the pathogenic bacterium Pseudomonas aeruginosa (defined as the median time of death, LT50). VM for LT50 is slightly less than VM for a variety of life-history and morphological traits in this strain of C. elegans, but is well within the range of reported values in a variety of organisms. Mean LT50 did not change significantly over 250 generations of mutation accumulation. Comparison of VM to the standing genetic variance (VG) implies a strength of selection against new mutations of a few tenths of a percent. These results suggest that the substantial standing genetic variation for susceptibility of C. elegans to P. aeruginosa can be explained by polygenic mutation coupled with purifying selection.
The mechanistic basis for how genetic variants cause differences in phenotypic traits is often elusive. We identified a quantitative trait locus in Caenorhabditis elegans that affects three seemingly unrelated phenotypic traits: lifetime... more
The mechanistic basis for how genetic variants cause differences in phenotypic traits is often elusive. We identified a quantitative trait locus in Caenorhabditis elegans that affects three seemingly unrelated phenotypic traits: lifetime fecundity, adult body size, and susceptibility to the human pathogen Staphyloccus aureus. We found a QTL for all three traits arises from variation in the neuropeptide receptor gene npr-1. Moreover, we found that variation in npr-1 is also responsible for differences in 247 gene expression traits. Variation in npr-1 is known to determine whether animals disperse throughout a bacterial lawn or aggregate at the edges of the lawn. We found that the allele that leads to aggregation is associated with reduced growth and reproductive output. The altered gene expression pattern caused by this allele suggests that the aggregation behavior might cause a weak starvation state, which is known to reduce growth rate and fecundity. Importantly, we show that variation in npr-1 causes each of these phenotypic differences through behavioral avoidance of ambient oxygen concentrations. These results suggest that variation in npr-1 has broad pleiotropic effects mediated by altered exposure to bacterial food.
In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are... more
In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species.
Resistance of nematodes to anthelmintics such as avermectins has emerged as a major global health and agricultural problem, but genes conferring natural resistance to avermectins are unknown. We show that a naturally occurring... more
Resistance of nematodes to anthelmintics such as avermectins has emerged as a major global health and agricultural problem, but genes conferring natural resistance to avermectins are unknown. We show that a naturally occurring four-amino-acid deletion in the ligand-binding domain of GLC-1, the alpha-subunit of a glutamate-gated chloride channel, confers resistance to avermectins in the model nematode Caenorhabditis elegans. We also find that the same variant confers resistance to the avermectin-producing bacterium Streptomyces avermitilis. Population-genetic analyses identified two highly divergent haplotypes at the glc-1 locus that have been maintained at intermediate frequencies by long-term balancing selection. These results implicate variation in glutamate-gated chloride channels in avermectin resistance and provide a mechanism by which such resistance can be maintained.
The nematode Caenorhabditis elegans responds to pathogenic bacteria with conserved innate immune responses and pathogen avoidance behaviors. We investigated natural variation in C. elegans resistance to pathogen infection. With the use of... more
The nematode Caenorhabditis elegans responds to pathogenic bacteria with conserved innate immune responses and pathogen avoidance behaviors. We investigated natural variation in C. elegans resistance to pathogen infection. With the use of quantitative genetic analysis, we determined that the pathogen susceptibility difference between the laboratory wild-type strain N2 and the wild isolate CB4856 is caused by a polymorphism in the npr-1 gene, which encodes a homolog of the mammalian neuropeptide Y receptor. We show that the mechanism of NPR-1–mediated pathogen resistance is through oxygen-dependent behavioral avoidance rather than direct regulation of innate immunity. For C. elegans, bacteria represent food but also a potential source of infection. Our data underscore the importance of behavioral responses to oxygen levels in finding an optimal balance between these potentially conflicting cues.
The phenotypic differences between individual organisms can often be ascribed to underlying genetic and environmental variation. However, even genetically identical organisms in homogeneous environments vary, indicating that randomness in... more
The phenotypic differences between individual organisms can often be ascribed to underlying genetic and environmental variation. However, even genetically identical organisms in homogeneous environments vary, indicating that randomness in developmental processes such as gene expression may also generate diversity. To examine the consequences of gene expression variability in multicellular organisms, we studied intestinal specification in the nematode Caenorhabditis elegans in which wild-type cell fate is invariant and controlled by a small transcriptional network. Mutations in elements of this network can have indeterminate effects: some mutant embryos fail to develop intestinal cells, whereas others produce intestinal precursors. By counting transcripts of the genes in this network in individual embryos, we show that the expression of an otherwise redundant gene becomes highly variable in the mutants and that this variation is subjected to a threshold, producing an ON/OFF expression pattern of the master regulatory gene of intestinal differentiation. Our results demonstrate that mutations in developmental networks can expose otherwise buffered stochastic variability in gene expression, leading to pronounced phenotypic variation.
Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been... more
Many mutations cause obvious abnormalities only when combined with other mutations. Such synthetic interactions can be the result of redundant gene functions. In Caenorhabditis elegans, the synthetic multivulva (synMuv) genes have been grouped into multiple classes that redundantly inhibit vulval cell fates. Animals with one or more mutations of the same class undergo wild-type vulval development, whereas animals with mutations of any two classes have a multivulva phenotype. By varying temperature and genetic background, we determined that mutations in most synMuv genes within a single synMuv class enhance each other. However, in a few cases no enhancement was observed. For example, mutations that affect an Mi2 homolog and a histone methyltransferase are of the same class and do not show enhancement. We suggest that such sets of genes function together in vivo and in at least some cases encode proteins that interact physically. The approach of genetic enhancement can be applied more broadly to identify potential protein complexes as well as redundant processes or pathways. Many synMuv genes are evolutionarily conserved, and the genetic relationships we have identified might define the functions not only of synMuv genes in C. elegans but also of their homologs in other organisms.
Studies of Schizosaccharomyces pombe and mammalian cells identified a series of histone modifications that result in transcriptional repression. Lysine 9 of histone H3 (H3K9) is deacetylated by the NuRD complex, methylated by a histone... more
Studies of Schizosaccharomyces pombe and mammalian cells identified a series of histone modifications that result in transcriptional repression. Lysine 9 of histone H3 (H3K9) is deacetylated by the NuRD complex, methylated by a histone methyltransferase (HMT) and then bound by a chromodomain-containing protein, such as heterochromatin protein 1 (HP1), leading to transcriptional repression. A Caenorhabditis elegans NuRD-like complex and HP1 homologs regulate vulval development, but no HMT is known to act in this process. We surveyed all 38 putative HMT genes in C. elegans and identified met-1 and met-2 as negative regulators of vulval cell-fate specification. met-1 is homologous to Saccharomyces cerevisiae Set2, an H3K36 HMT that prevents the ectopic initiation of transcription. met-2 is homologous to human SETDB1, an H3K9 HMT that represses transcription. met-1 and met-2 (1) are each required for the normal trimethylation of both H3K9 and H3K36; (2) act redundantly with each other as well as with the C. elegans HP1 homologs; and (3) repress transcription of the EGF gene lin-3, which encodes the signal that induces vulval development. We propose that as is the case for Set2 in yeast, MET-1 prevents the reinitiation of transcription. Our results suggest that in the inhibition of vulval development, homologs of SETDB1, HP1 and the NuRD complex act with this H3K36 HMT to prevent ectopic transcriptional initiation.
The class A, B and C synthetic multivulva (synMuv) genes act redundantly to negatively regulate the expression of vulval cell fates in Caenorhabditis elegans. The class B and C synMuv proteins include homologs of proteins that modulate... more
The class A, B and C synthetic multivulva (synMuv) genes act redundantly to negatively regulate the expression of vulval cell fates in Caenorhabditis elegans. The class B and C synMuv proteins include homologs of proteins that modulate chromatin and influence transcription in other organisms similar to members of the Myb-MuvB/dREAM, NuRD and Tip60/NuA4 complexes. To determine how these chromatin-remodeling activities negatively regulate the vulval cell-fate decision, we isolated a suppressor of the synMuv phenotype and found that the suppressor gene encodes the C. elegans homolog of Drosophila melanogaster ISWI. The C. elegans ISW-1 protein likely acts as part of a Nucleosome Remodeling Factor (NURF) complex with NURF-1, a nematode ortholog of NURF301, to promote the synMuv phenotype. isw-1 and nurf-1 mutations suppress both the synMuv phenotype and the multivulva phenotype caused by overactivation of the Ras pathway. Our data suggest that a NURF-like complex promotes the expression of vulval cell fates by antagonizing the transcriptional and chromatin-remodeling activities of complexes similar to Myb-MuvB/dREAM, NuRD and Tip60/NuA4. Because the phenotypes caused by a null mutation in the tumor-suppressor and class B synMuv gene lin-35 Rb and a gain-of-function mutation in let-60 Ras are suppressed by reduction of isw-1 function, NURF complex proteins might be effective targets for cancer therapy.
Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl... more
Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl states. However, the interplay among these distinct modification states is not well understood. Here we investigate the relationships between dimethyl and trimethyl modifications on lysine 9 of histone H3 (H3K9me2 and H3K9me3) in the adult Caenorhabditis elegans germ line. Simultaneous immunofluorescence reveals very different temporal/spatial localization patterns for H3K9me2 and H3K9me3. While H3K9me2 is enriched on unpaired sex chromosomes and undergoes dynamic changes as germ cells progress through meiotic prophase, we demonstrate here that H3K9me3 is not enriched on unpaired sex chromosomes and localizes to all chromosomes in all germ cells in adult hermaphrodites and until the primary spermatocyte stage in males. Moreover, high-copy transgene arrays carrying somatic-cell specific promoters are highly enriched for H3K9me3 (but not H3K9me2) and correlate with DAPI-faint chromatin domains. We further demonstrate that the H3K9me2 and H3K9me3 marks are acquired independently. MET-2, a member of the SETDB histone methyltransferase (HMTase) family, is required for all detectable germline H3K9me2 but is dispensable for H3K9me3 in adult germ cells. Conversely, we show that the HMTase MES-2, an E(z) homolog responsible for H3K27 methylation in adult germ cells, is required for much of the germline H3K9me3 but is dispensable for H3K9me2. Phenotypic analysis of met-2 mutants indicates that MET-2 is nonessential for fertility but inhibits ectopic germ cell proliferation and contributes to the fidelity of chromosome inheritance. Our demonstration of the differential localization and independent acquisition of H3K9me2 and H3K9me3 implies that the trimethyl modification of H3K9 is not built upon the dimethyl modification in this context. Further, these and other data support a model in which these two modifications function independently in adult C. elegans germ cells.
The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically... more
The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.
The transcription factor Twist initiates Drosophila mesoderm development, resulting in the formation of heart, somatic muscle, and other cell types. Using a Drosophila embryo sorter, we isolated enough homozygous twist mutant embryos to... more
The transcription factor Twist initiates Drosophila mesoderm development, resulting in the formation of heart, somatic muscle, and other cell types. Using a Drosophila embryo sorter, we isolated enough homozygous twist mutant embryos to perform DNA microarray experiments. Transcription profiles of twist loss-of-function embryos, embryos with ubiquitous twist expression, and wild-type embryos were compared at different developmental stages. The results implicate hundreds of genes, many with vertebrate homologs, in stage-specific processes in mesoderm development. One such gene, gleeful, related to the vertebrate Gli genes, is essential for somatic muscle development and sufficient to cause neural cells to express a muscle marker.