Single domain binders (nanobodies) obtained from camelid antibody libraries hold a great promise ... more Single domain binders (nanobodies) obtained from camelid antibody libraries hold a great promise for immunoassay development. However, there is not simple methods to select the most valuable nanobodies from the crowd of positive clones obtained after the initial screening. In this paper, we describe a novel nanobody-based platform that allows comparison of the reactivity of hundreds of clones with the labeled antigen, and in a second step, to identify the best nanobody pairs for two-site immunoassay development. The output clones are biotinylated in vivo in 96-well culture blocks and then used to saturate the biotin binding capacity of avidin coated wells. This standardizes the amount of captured antibody allowing their sorting by ranking their reactivity with the labeled antigen. Using human soluble epoxide hydrolase (sEH) as a model antigen, we were able to classify 96 clones in four families and confirm this classification by sequencing. This provided a criterion to select a restricted panel of five capturing antibodies and to test each of them against the rest of the 96 clones. The method constitutes a powerful tool for epitope binning, and in our case allowed development of a sandwich ELISA for sEH with a detection limit of 63 pg/mL and four log dynamic range, which performed with excellent recovery in different tissue extracts. This strategy provides a systematic way to test nanobody pairwise combinations and would have a broad utility for the development of highly sensitive sandwich immunoassays.
Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound... more Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound (EDC) exposure in fish. Existing immunoassays are limited to a few species, which restricts their use for the analysis of local wildlife sentinels. Using C. facetum as a relevant South American model fish, this work presents a new strategy for the preparation of antibodies to VTG and CHO, with zero cross-reactivity with fish serum components. Recombinant fragments of Cichlasoma facetum VTG (280-mer) and CHO (223-mer) were prepared by degenerate primer RT-PCR and expression in E. coli. Polyclonal and monoclonal antibodies prepared with these antigens were used to develop rapid dotblot assays for VTG and CHO. Both the polyclonal and monoclonal antibodies prepared with the recombinant antigens reacted against the native proteins adsorbed on to nitrocellulose allowing the set up of sensitive dotblot assays. The VTG assay was further validated with spiked samples and purified native VTG. Exposure experiments with several estrogenic compounds revealed the potential of C. facetum as a sensitive biomonitor that produced measurable responses at concentrations of 100 ng L −1 of 17-beta-estradiol, 100 ng L −1 of ethynylestradiol, and 6.6 μg L −1 of nonylphenol. The approach described here may be applied to other native species to produce highly specific and sensitive rapid tests. It may be particularly advantageous for species that cannot be kept in captivity or when homogeneous purification of the immunizing proteins is particularly challenging. In conclusion, we present a novel approach to develop a strategy for the generation of immunoassay reagents for vitellogenin (VTG) and choriogenin (CHO), which will facilitate regional studies on the impact of endocrine-disrupting chemicals on local wildlife.
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the pr... more Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (˜30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.
Abstract
BACKGROUND:
Owing to their minimal size, high production yield, versatility and robustne... more Abstract BACKGROUND: Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle. METHODS: Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification. RESULTS: The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells. CONCLUSIONS: This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents. GENERAL SIGNIFICANCE: This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.
The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertensi... more The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer, and other diseases. However, there is not a simple, inexpensive, and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage-displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the enzyme-linked immunosorbent assay (ELISA) and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney, and lung). The VHH-based ELISA appears to be a new reliable method for monitoring the sEH and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research.
Short peptide loops selected from phage libraries can specifically recognize the formation of hap... more Short peptide loops selected from phage libraries can specifically recognize the formation of haptenantibody immunocomplexes and can thus be used to develop phage anti-immunocomplex assays (PHAIA) for noncompetitive detection of small molecules. In this study, we generated recombinant chimeras by fusing anti-immunocomplex peptides selected from phage libraries to the N-or C-termini of core streptavidin and used them to setup phage-free noncompetitive assays for the herbicide clomazone (MW 240 Da). The best conditions for refolding were optimized by a high throughput screening allowing to obtain tens of mg of purified protein per liter of culture. The noncompetitive assay developed with these chimeras performed with a 50% saturating concentration (SC 50 ) of 2.2 ± 0.3 ng/mL and limit of detection (LOD) of 0.48 ng/mL. Values that are 13-and 8-fold better that those obtained for the SC 50 and LOD of the competitive assay setup with the same antibody. Apart from the first demonstration that recombinant peptide-streptavidin chimeras can be used for sensitive immunodetection of small molecules with a positive readout, this new assay component is a highly standardized reagent with a defined stoichiometry, which can be used in combination with the broad option of existing biotinylated reagents offering a great versatility for the development of conventional immunoassay and biosensors. The utility of the test was demonstrated analyzing the clomazone runoff during the rice growing season in northern Uruguay.
Small compounds cannot bind simultaneously to two antibodies, and thus, their immunodetection is ... more Small compounds cannot bind simultaneously to two antibodies, and thus, their immunodetection is limited to competitive formats in which the analyte is indirectly quantitated by measuring the unoccupied antibody binding sites using a competing reporter. This limitation can be circumvented by using phage-borne peptides selected for their ability to specifically react with the analyte−antibody immunocomplex, which allows the detection of these small molecules in a noncompetitive format (PHAIA) with increased sensitivity and a positive readout. In an effort to find substitutes for the phage particles in PHAIA, we explore the use of the B subunit of the Shiga-like toxin of Escherichia coli, also known as verotoxin (VTX), as a scaffold for multivalent display of anti-immunocomplex peptides. Using the herbicides molinate and clomazone as model compounds, we built peptide−VTX recombinant chimeras that were produced in the periplasmic space of E. coli as soluble pentamers, as confirmed by multiangle light scattering analysis. These multivalent constructs, which we termed nanopeptamers, were conjugated to a tracer enzyme and used to detect the herbicide−antibody complex in an ELISA format. The VTX−nanopeptamer assays performed with over a 10-fold increased sensitivity and excellent recovery from spiked surface and mineral water samples. The carbon black-labeled peptide−VTX nanopeptamers showed great potential for the development of a lateral-flow test for small molecules with a visual positive readout that allowed the detection of up to 2.5 ng/mL of clomazone.
Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound... more Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound (EDC) exposure in fish. Existing immunoassays are limited to a few species, which restricts their use for the analysis of local wildlife sentinels. Using C. facetum as a relevant South American model fish, this work presents a new strategy for the preparation of antibodies to VTG and CHO, with zero cross-reactivity with fish serum components. Recombinant fragments of Cichlasoma facetum VTG (280-mer) and CHO (223-mer) were prepared by degenerate primer RT-PCR and expression in E. coli. Polyclonal and monoclonal antibodies prepared with these antigens were used to develop rapid dotblot assays for VTG and CHO. Both the polyclonal and monoclonal antibodies prepared with the recombinant antigens reacted against the native proteins adsorbed on to nitrocellulose allowing the set up of sensitive dotblot assays. The VTG assay was further validated with spiked samples and purified native VTG. Exposure experiments with several estrogenic compounds revealed the potential of C. facetum as a sensitive biomonitor that produced measurable responses at concentrations of 100 ng L−1 of 17-beta-estradiol, 100 ng L−1 of ethynylestradiol, and 6.6 μg L−1 of nonylphenol. The approach described here may be applied to other native species to produce highly specific and sensitive rapid tests. It may be particularly advantageous for species that cannot be kept in captivity or when homogeneous purification of the immunizing proteins is particularly challenging. In conclusion, we present a novel approach to develop a strategy for the generation of immunoassay reagents for vitellogenin (VTG) and choriogenin (CHO), which will facilitate regional studies on the impact of endocrine-disrupting chemicals on local wildlife.
Single-domain antibodies (sdAbs) found in camelids lack a light chain, and their antigen-binding ... more Single-domain antibodies (sdAbs) found in camelids lack a light chain, and their antigen-binding site sits completely in the heavy-chain variable domain (VHH). Their simplicity, thermostability, and ease in expression have made VHHs highly attractive. Although this has been successfully exploited for macromolecular antigens, their application to the detection of small molecules is still limited to a very few reports, mostly describing low-affinity VHHs. Using triclocarban (TCC) as a model hapten, we found that conventional antibodies, IgG1 fraction, reacted with free TCC with a higher relative affinity (IC 50 51.0 ng/mL) than did the sdAbs (IgG2 and IgG3, 497 and 370 ng/mL, respectively). A VHH library was prepared, and by elution of phage with limiting concentrations of TCC and competitive selection of binders, we were able to isolate high-affinity clones, K D 0.98À1.37 nM (SPR), which allowed development of a competitive assay for TCC with an IC 50 = 3.5 ng/mL (11 nM). This represents a 100-fold improvement with regard to the performance of the sdAb serum fraction, and it is 100-fold better than the IC 50 attained with other antihapten VHHs reported thus far. Despite the modest overall antihapten sdAbs response in llamas, a small subpopulation of high-affinity VHHs is generated that can be isolated by careful design of the selection process.
Phage anti-immunocomplex assay Phage-displayed peptide Phage ELISA Noncompetitive immunoassay BDE... more Phage anti-immunocomplex assay Phage-displayed peptide Phage ELISA Noncompetitive immunoassay BDE 47 Brominated flame retardant a b s t r a c t
Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound... more Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound (EDC) exposure in fish. Existing immunoassays are limited to a few species, which restricts their use for the analysis of local wildlife sentinels. Using C. facetum as a relevant South American model fish, this work presents a new strategy for the preparation of antibodies to VTG and CHO, with zero cross-reactivity with fish serum components. Recombinant fragments of Cichlasoma facetum VTG (280-mer) and CHO (223-mer) were prepared by degenerate primer RT-PCR and expression in E. coli. Polyclonal and monoclonal antibodies prepared with these antigens were used to develop rapid dotblot assays for VTG and CHO. Both the polyclonal and monoclonal antibodies prepared with the recombinant antigens reacted against the native proteins adsorbed on to nitrocellulose allowing the set up of sensitive dotblot assays. The VTG assay was further validated with spiked samples and purified native VTG. Exposure experiments with several estrogenic compounds revealed the potential of C. facetum as a sensitive biomonitor that produced measurable responses at concentrations of 100 ng L −1 of 17-beta-estradiol, 100 ng L −1 of ethynylestradiol, and 6.6 μg L −1 of nonylphenol. The approach described here may be applied to other native species to produce highly specific and sensitive rapid tests. It may be particularly advantageous for species that cannot be kept in captivity or when homogeneous purification of the immunizing proteins is particularly challenging. In conclusion, we present a novel approach to develop a strategy for the generation of immunoassay reagents for vitellogenin (VTG) and choriogenin (CHO), which will facilitate regional studies on the impact of endocrine-disrupting chemicals on local wildlife.
Single domain binders (nanobodies) obtained from camelid antibody libraries hold a great promise ... more Single domain binders (nanobodies) obtained from camelid antibody libraries hold a great promise for immunoassay development. However, there is not simple methods to select the most valuable nanobodies from the crowd of positive clones obtained after the initial screening. In this paper, we describe a novel nanobody-based platform that allows comparison of the reactivity of hundreds of clones with the labeled antigen, and in a second step, to identify the best nanobody pairs for two-site immunoassay development. The output clones are biotinylated in vivo in 96-well culture blocks and then used to saturate the biotin binding capacity of avidin coated wells. This standardizes the amount of captured antibody allowing their sorting by ranking their reactivity with the labeled antigen. Using human soluble epoxide hydrolase (sEH) as a model antigen, we were able to classify 96 clones in four families and confirm this classification by sequencing. This provided a criterion to select a restricted panel of five capturing antibodies and to test each of them against the rest of the 96 clones. The method constitutes a powerful tool for epitope binning, and in our case allowed development of a sandwich ELISA for sEH with a detection limit of 63 pg/mL and four log dynamic range, which performed with excellent recovery in different tissue extracts. This strategy provides a systematic way to test nanobody pairwise combinations and would have a broad utility for the development of highly sensitive sandwich immunoassays.
Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound... more Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound (EDC) exposure in fish. Existing immunoassays are limited to a few species, which restricts their use for the analysis of local wildlife sentinels. Using C. facetum as a relevant South American model fish, this work presents a new strategy for the preparation of antibodies to VTG and CHO, with zero cross-reactivity with fish serum components. Recombinant fragments of Cichlasoma facetum VTG (280-mer) and CHO (223-mer) were prepared by degenerate primer RT-PCR and expression in E. coli. Polyclonal and monoclonal antibodies prepared with these antigens were used to develop rapid dotblot assays for VTG and CHO. Both the polyclonal and monoclonal antibodies prepared with the recombinant antigens reacted against the native proteins adsorbed on to nitrocellulose allowing the set up of sensitive dotblot assays. The VTG assay was further validated with spiked samples and purified native VTG. Exposure experiments with several estrogenic compounds revealed the potential of C. facetum as a sensitive biomonitor that produced measurable responses at concentrations of 100 ng L −1 of 17-beta-estradiol, 100 ng L −1 of ethynylestradiol, and 6.6 μg L −1 of nonylphenol. The approach described here may be applied to other native species to produce highly specific and sensitive rapid tests. It may be particularly advantageous for species that cannot be kept in captivity or when homogeneous purification of the immunizing proteins is particularly challenging. In conclusion, we present a novel approach to develop a strategy for the generation of immunoassay reagents for vitellogenin (VTG) and choriogenin (CHO), which will facilitate regional studies on the impact of endocrine-disrupting chemicals on local wildlife.
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the pr... more Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (˜30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.
Abstract
BACKGROUND:
Owing to their minimal size, high production yield, versatility and robustne... more Abstract BACKGROUND: Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle. METHODS: Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification. RESULTS: The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells. CONCLUSIONS: This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents. GENERAL SIGNIFICANCE: This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.
The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertensi... more The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer, and other diseases. However, there is not a simple, inexpensive, and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage-displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the enzyme-linked immunosorbent assay (ELISA) and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney, and lung). The VHH-based ELISA appears to be a new reliable method for monitoring the sEH and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research.
Short peptide loops selected from phage libraries can specifically recognize the formation of hap... more Short peptide loops selected from phage libraries can specifically recognize the formation of haptenantibody immunocomplexes and can thus be used to develop phage anti-immunocomplex assays (PHAIA) for noncompetitive detection of small molecules. In this study, we generated recombinant chimeras by fusing anti-immunocomplex peptides selected from phage libraries to the N-or C-termini of core streptavidin and used them to setup phage-free noncompetitive assays for the herbicide clomazone (MW 240 Da). The best conditions for refolding were optimized by a high throughput screening allowing to obtain tens of mg of purified protein per liter of culture. The noncompetitive assay developed with these chimeras performed with a 50% saturating concentration (SC 50 ) of 2.2 ± 0.3 ng/mL and limit of detection (LOD) of 0.48 ng/mL. Values that are 13-and 8-fold better that those obtained for the SC 50 and LOD of the competitive assay setup with the same antibody. Apart from the first demonstration that recombinant peptide-streptavidin chimeras can be used for sensitive immunodetection of small molecules with a positive readout, this new assay component is a highly standardized reagent with a defined stoichiometry, which can be used in combination with the broad option of existing biotinylated reagents offering a great versatility for the development of conventional immunoassay and biosensors. The utility of the test was demonstrated analyzing the clomazone runoff during the rice growing season in northern Uruguay.
Small compounds cannot bind simultaneously to two antibodies, and thus, their immunodetection is ... more Small compounds cannot bind simultaneously to two antibodies, and thus, their immunodetection is limited to competitive formats in which the analyte is indirectly quantitated by measuring the unoccupied antibody binding sites using a competing reporter. This limitation can be circumvented by using phage-borne peptides selected for their ability to specifically react with the analyte−antibody immunocomplex, which allows the detection of these small molecules in a noncompetitive format (PHAIA) with increased sensitivity and a positive readout. In an effort to find substitutes for the phage particles in PHAIA, we explore the use of the B subunit of the Shiga-like toxin of Escherichia coli, also known as verotoxin (VTX), as a scaffold for multivalent display of anti-immunocomplex peptides. Using the herbicides molinate and clomazone as model compounds, we built peptide−VTX recombinant chimeras that were produced in the periplasmic space of E. coli as soluble pentamers, as confirmed by multiangle light scattering analysis. These multivalent constructs, which we termed nanopeptamers, were conjugated to a tracer enzyme and used to detect the herbicide−antibody complex in an ELISA format. The VTX−nanopeptamer assays performed with over a 10-fold increased sensitivity and excellent recovery from spiked surface and mineral water samples. The carbon black-labeled peptide−VTX nanopeptamers showed great potential for the development of a lateral-flow test for small molecules with a visual positive readout that allowed the detection of up to 2.5 ng/mL of clomazone.
Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound... more Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound (EDC) exposure in fish. Existing immunoassays are limited to a few species, which restricts their use for the analysis of local wildlife sentinels. Using C. facetum as a relevant South American model fish, this work presents a new strategy for the preparation of antibodies to VTG and CHO, with zero cross-reactivity with fish serum components. Recombinant fragments of Cichlasoma facetum VTG (280-mer) and CHO (223-mer) were prepared by degenerate primer RT-PCR and expression in E. coli. Polyclonal and monoclonal antibodies prepared with these antigens were used to develop rapid dotblot assays for VTG and CHO. Both the polyclonal and monoclonal antibodies prepared with the recombinant antigens reacted against the native proteins adsorbed on to nitrocellulose allowing the set up of sensitive dotblot assays. The VTG assay was further validated with spiked samples and purified native VTG. Exposure experiments with several estrogenic compounds revealed the potential of C. facetum as a sensitive biomonitor that produced measurable responses at concentrations of 100 ng L−1 of 17-beta-estradiol, 100 ng L−1 of ethynylestradiol, and 6.6 μg L−1 of nonylphenol. The approach described here may be applied to other native species to produce highly specific and sensitive rapid tests. It may be particularly advantageous for species that cannot be kept in captivity or when homogeneous purification of the immunizing proteins is particularly challenging. In conclusion, we present a novel approach to develop a strategy for the generation of immunoassay reagents for vitellogenin (VTG) and choriogenin (CHO), which will facilitate regional studies on the impact of endocrine-disrupting chemicals on local wildlife.
Single-domain antibodies (sdAbs) found in camelids lack a light chain, and their antigen-binding ... more Single-domain antibodies (sdAbs) found in camelids lack a light chain, and their antigen-binding site sits completely in the heavy-chain variable domain (VHH). Their simplicity, thermostability, and ease in expression have made VHHs highly attractive. Although this has been successfully exploited for macromolecular antigens, their application to the detection of small molecules is still limited to a very few reports, mostly describing low-affinity VHHs. Using triclocarban (TCC) as a model hapten, we found that conventional antibodies, IgG1 fraction, reacted with free TCC with a higher relative affinity (IC 50 51.0 ng/mL) than did the sdAbs (IgG2 and IgG3, 497 and 370 ng/mL, respectively). A VHH library was prepared, and by elution of phage with limiting concentrations of TCC and competitive selection of binders, we were able to isolate high-affinity clones, K D 0.98À1.37 nM (SPR), which allowed development of a competitive assay for TCC with an IC 50 = 3.5 ng/mL (11 nM). This represents a 100-fold improvement with regard to the performance of the sdAb serum fraction, and it is 100-fold better than the IC 50 attained with other antihapten VHHs reported thus far. Despite the modest overall antihapten sdAbs response in llamas, a small subpopulation of high-affinity VHHs is generated that can be isolated by careful design of the selection process.
Phage anti-immunocomplex assay Phage-displayed peptide Phage ELISA Noncompetitive immunoassay BDE... more Phage anti-immunocomplex assay Phage-displayed peptide Phage ELISA Noncompetitive immunoassay BDE 47 Brominated flame retardant a b s t r a c t
Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound... more Vitellogenin (VTG) and choriogenin (CHO) are valuable biomarkers of endocrine-disrupting compound (EDC) exposure in fish. Existing immunoassays are limited to a few species, which restricts their use for the analysis of local wildlife sentinels. Using C. facetum as a relevant South American model fish, this work presents a new strategy for the preparation of antibodies to VTG and CHO, with zero cross-reactivity with fish serum components. Recombinant fragments of Cichlasoma facetum VTG (280-mer) and CHO (223-mer) were prepared by degenerate primer RT-PCR and expression in E. coli. Polyclonal and monoclonal antibodies prepared with these antigens were used to develop rapid dotblot assays for VTG and CHO. Both the polyclonal and monoclonal antibodies prepared with the recombinant antigens reacted against the native proteins adsorbed on to nitrocellulose allowing the set up of sensitive dotblot assays. The VTG assay was further validated with spiked samples and purified native VTG. Exposure experiments with several estrogenic compounds revealed the potential of C. facetum as a sensitive biomonitor that produced measurable responses at concentrations of 100 ng L −1 of 17-beta-estradiol, 100 ng L −1 of ethynylestradiol, and 6.6 μg L −1 of nonylphenol. The approach described here may be applied to other native species to produce highly specific and sensitive rapid tests. It may be particularly advantageous for species that cannot be kept in captivity or when homogeneous purification of the immunizing proteins is particularly challenging. In conclusion, we present a novel approach to develop a strategy for the generation of immunoassay reagents for vitellogenin (VTG) and choriogenin (CHO), which will facilitate regional studies on the impact of endocrine-disrupting chemicals on local wildlife.
Uploads
Papers by Martin Rossotti
BACKGROUND:
Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle.
METHODS:
Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification.
RESULTS:
The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells.
CONCLUSIONS:
This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents.
GENERAL SIGNIFICANCE:
This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.
BACKGROUND:
Owing to their minimal size, high production yield, versatility and robustness, the recombinant variable domains (nanobodies) of camelid single chain antibodies are valued affinity reagents for research, diagnostic, and therapeutic applications. While their preparation against purified antigens is straightforward, the generation of nanobodies to difficult targets such as multi-pass or complex membrane cell receptors remains challenging. Here we devised a platform for high throughput identification of nanobodies to cell receptor based on the use of a biotin handle.
METHODS:
Using a biotin-acceptor peptide tag, the in vivo biotinylation of nanobodies in 96 well culture blocks was optimized allowing their parallel analysis by flow cytometry and ELISA, and their direct use for pull-down/MS target identification.
RESULTS:
The potential of this strategy was demonstrated by the selection and characterization of panels of nanobodies to Mac-1 (CD11b/CD18), MHC II and the mouse Ly-5 leukocyte common antigen (CD45) receptors, from a VHH library obtained from a llama immunized with mouse bone marrow derived dendritic cells. By on and off switching of the addition of biotin, the method also allowed the epitope binning of the selected Nbs directly on cells.
CONCLUSIONS:
This strategy streamlines the selection of potent nanobodies to complex antigens, and the selected nanobodies constitute ready-to-use biotinylated reagents.
GENERAL SIGNIFICANCE:
This method will accelerate the discovery of nanobodies to cell membrane receptors which comprise the largest group of drug and analytical targets.