Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A001487
Expansion of (Product_{j>=1} (1-(-x)^j) - 1)^9 in powers of x.
(Formerly M4618 N1971)
6
1, -9, 36, -84, 117, -54, -177, 540, -837, 755, -54, -1197, 2535, -3204, 2520, -246, -3150, 6426, -8106, 7011, -2844, -3549, 10359, -15120, 15804, -11403, 2574, 8610, -18972, 25425, -25824, 18954, -6165, -10080, 25101, -35262, 37799, -31374, 17379, 1929
OFFSET
9,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
FORMULA
a(n) = [x^n]( QPochhammer(-x) - 1 )^9. - G. C. Greubel, Sep 04 2023
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n, 9):
seq(a(n), n=9..48); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
nmax=48; CoefficientList[Series[(Product[(1 - (-x)^j), {j, nmax}] -1)^9, {x, 0, nmax}], x]//Drop[#, 9] & (* Ilya Gutkovskiy, Feb 07 2021 *)
Drop[CoefficientList[Series[(QPochhammer[-x] -1)^9, {x, 0, 102}], x], 9] (* G. C. Greubel, Sep 04 2023 *)
PROG
(Magma)
m:=102;
R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!( ((&*[1-(-x)^j: j in [1..m+2]]) -1)^9 )); // G. C. Greubel, Sep 04 2023
(SageMath)
from sage.modular.etaproducts import qexp_eta
m=100; k=9;
def f(k, x): return (-1 + qexp_eta(QQ[['q']], m+2).subs(q=-x) )^k
def A001487_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( f(k, x) ).list()
a=A001487_list(m); a[k:] # G. C. Greubel, Sep 04 2023
(PARI) my(N=55, x='x+O('x^N)); Vec((eta(-x)-1)^9) \\ Joerg Arndt, Sep 05 2023
KEYWORD
sign
EXTENSIONS
Definition and offset edited by Ilya Gutkovskiy, Feb 07 2021
STATUS
approved