Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036966
3-full (or cube-full, or cubefull) numbers: if a prime p divides n then so does p^3.
89
1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000
OFFSET
1,2
COMMENTS
Also called powerful_3 numbers.
For n > 1: A124010(a(n),k) > 2, k = 1..A001221(a(n)). - Reinhard Zumkeller, Dec 15 2013
a(m) mod prime(n) > 0 for m < A258600(n); a(A258600(n)) = A030078(n) = prime(n)^3. - Reinhard Zumkeller, Jun 06 2015
REFERENCES
M. J. Halm, More Sequences, Mpossibilities 83, April 2003.
A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
M. J. Halm, Sequences
H.-Q. Liu, The number of cubefull numbers in an interval (supplement), Funct. Approx. Comment. Math. 43 (2) 105-107, December 2010.
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime}(1 + 1/(p^2*(p-1))) (A065483). - Amiram Eldar, Jun 23 2020
Numbers of the form x^5*y^4*z^3. There is a unique representation with x,y squarefree and coprime. - Charles R Greathouse IV, Jan 12 2022
MAPLE
isA036966 := proc(n)
local p ;
for p in ifactors(n)[2] do
if op(2, p) < 3 then
return false;
end if;
end do:
return true ;
end proc:
A036966 := proc(n)
option remember;
if n = 1 then
1 ;
else
for a from procname(n-1)+1 do
if isA036966(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, May 01 2013
MATHEMATICA
Select[ Range[2, 8191], Min[ Table[ # [[2]], {1}] & /@ FactorInteger[ # ]] > 2 &]
Join[{1}, Select[Range[8000], Min[Transpose[FactorInteger[#]][[2]]]>2&]] (* Harvey P. Dale, Jul 17 2013 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, fromList, union)
a036966 n = a036966_list !! (n-1)
a036966_list = 1 : f (singleton z) [1, z] zs where
f s q3s p3s'@(p3:p3s)
| m < p3 = m : f (union (fromList $ map (* m) ps) s') q3s p3s'
| otherwise = f (union (fromList $ map (* p3) q3s) s) (p3:q3s) p3s
where ps = a027748_row m
(m, s') = deleteFindMin s
(z:zs) = a030078_list
-- Reinhard Zumkeller, Jun 03 2015, Dec 15 2013
(PARI) is(n)=n==1 || vecmin(factor(n)[, 2])>2 \\ Charles R Greathouse IV, Sep 17 2015
(PARI) list(lim)=my(v=List(), t); for(a=1, sqrtnint(lim\1, 5), for(b=1, sqrtnint(lim\a^5, 4), t=a^5*b^4; for(c=1, sqrtnint(lim\t, 3), listput(v, t*c^3)))); Set(v) \\ Charles R Greathouse IV, Nov 20 2015
(PARI) list(lim)=my(v=List(), t); forsquarefree(a=1, sqrtnint(lim\1, 5), my(a5=a[1]^5); forsquarefree(b=1, sqrtnint(lim\a5, 4), if(gcd(a[1], b[1])>1, next); t=a5*b[1]^4; for(c=1, sqrtnint(lim\t, 3), listput(v, t*c^3)))); Set(v) \\ Charles R Greathouse IV, Jan 12 2022
(Python)
from math import gcd
from sympy import integer_nthroot, factorint
def A036966(n):
def f(x):
c = n+x
for w in range(1, integer_nthroot(x, 5)[0]+1):
if all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=x//w**5, 4)[0]+1):
if gcd(w, y)==1 and all(d<=1 for d in factorint(y).values()):
c -= integer_nthroot(z//y**4, 3)[0]
return c
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 10 2024
KEYWORD
easy,nonn,nice
EXTENSIONS
More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002
STATUS
approved