Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036967
4-full numbers: if a prime p divides k then so does p^4.
22
1, 16, 32, 64, 81, 128, 243, 256, 512, 625, 729, 1024, 1296, 2048, 2187, 2401, 2592, 3125, 3888, 4096, 5184, 6561, 7776, 8192, 10000, 10368, 11664, 14641, 15552, 15625, 16384, 16807, 19683, 20000, 20736, 23328, 28561, 31104, 32768, 34992
OFFSET
1,2
COMMENTS
a(m) mod prime(n) > 0 for m < A258601(n); a(A258601(n)) = A030514(n) = prime(n)^4. - Reinhard Zumkeller, Jun 06 2015
REFERENCES
E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 300 terms from T. D. Noe)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^3*(p-1))) = 1.1488462139214317030108176090790939019972506733993367867997411290952527... - Amiram Eldar, Jul 09 2020
MATHEMATICA
Join[{1}, Select[Range[35000], Min[Transpose[FactorInteger[#]][[2]]]>3&]] (* Harvey P. Dale, Jun 05 2012 *)
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, fromList, union)
a036967 n = a036967_list !! (n-1)
a036967_list = 1 : f (singleton z) [1, z] zs where
f s q4s p4s'@(p4:p4s)
| m < p4 = m : f (union (fromList $ map (* m) ps) s') q4s p4s'
| otherwise = f (union (fromList $ map (* p4) q4s) s) (p4:q4s) p4s
where ps = a027748_row m
(m, s') = deleteFindMin s
(z:zs) = a030514_list
-- Reinhard Zumkeller, Jun 03 2015
(PARI) is(n)=n==1 || vecmin(factor(n)[, 2])>3 \\ Charles R Greathouse IV, Sep 17 2015
(PARI)
M(v, u, lim)=vecsort(concat(vector(#v, i, my(m=lim\v[i]); v[i]*select(t->t<=m, u))))
Gen(lim, k)={my(v=[1]); forprime(p=2, sqrtnint(lim, k), v=M(v, concat([1], vector(logint(lim, p)-k+1, e, p^(e+k-1))), lim)); v}
Gen(35000, 4) \\ Andrew Howroyd, Sep 10 2024
(Python)
from sympy import factorint
A036967_list = [n for n in range(1, 10**5) if min(factorint(n).values(), default=4) >= 4] # Chai Wah Wu, Aug 18 2021
(Python)
from math import gcd
from sympy import integer_nthroot, factorint
def A036967(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for u in range(1, integer_nthroot(x, 7)[0]+1):
if all(d<=1 for d in factorint(u).values()):
for w in range(1, integer_nthroot(a:=x//u**7, 6)[0]+1):
if gcd(w, u)==1 and all(d<=1 for d in factorint(w).values()):
for y in range(1, integer_nthroot(z:=a//w**6, 5)[0]+1):
if gcd(w, y)==1 and gcd(u, y)==1 and all(d<=1 for d in factorint(y).values()):
c -= integer_nthroot(z//y**5, 4)[0]
return c
return bisection(f, n, n) # Chai Wah Wu, Sep 10 2024
CROSSREFS
A030514 is a subsequence.
Sequence in context: A339840 A172418 A369170 * A076468 A246550 A197917
KEYWORD
easy,nonn,nice
EXTENSIONS
More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002
STATUS
approved