Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A082159
Number of deterministic completely defined acyclic automata with 2 inputs and n+1 transient labeled states including a unique state having all transitions to the absorbing state.
5
1, 3, 39, 1206, 69189, 6416568, 881032059, 168514815360, 42934911510249, 14081311783382400, 5786296490491543599, 2914663547018935095552, 1767539279001227299807725, 1271059349855055258673975296, 1069996840045068513065229943875
OFFSET
0,2
COMMENTS
This is the first column of the array A082171.
LINKS
Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
FORMULA
a(n) = b_2(n), where b_2(0) = 1 and b_2(n) = Sum_{0..n-1} binomial(n, i) * (-1)^(n-i-1) * ((i + 2)^2 - 1)^(n-i) * b_2(i) for n > 0.
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + 2)^2 - 1)^(n - i) a[i], {i, 0, n - 1}];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Aug 29 2019 *)
PROG
(PARI) lista(nn)={my(a=vector(nn+1)); for(n=1, nn+1, a[n] = if(n==1, 1, sum(i=0, n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + 2)^2 - 1)^(n-i-1)*a[i+1]))); a; } \\ Petros Hadjicostas, Mar 07 2021
(Magma)
function a(n) // a = A082159
if n eq 0 then return 1;
else return (&+[Binomial(n, j)*(-1)^(n-j-1)*((j+2)^2 - 1)^(n-j)*a(j): j in [0..n-1]]);
end if;
end function;
[a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
(SageMath)
@CachedFunction
def a(n): # A082159
if n==0: return 1
else: return sum(binomial(n, j)*(-1)^(n-j-1)*((j+2)^2 -1)^(n-j)*a(j) for j in range(n))
[a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Apr 09 2003
STATUS
approved