Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A082169
Deterministic completely defined quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states.
6
1, 1, 1, 1, 4, 7, 1, 9, 56, 142, 1, 16, 207, 1780, 5941, 1, 25, 544, 9342, 103392, 428856, 1, 36, 1175, 32848, 709893, 9649124, 47885899, 1, 49, 2232, 91150, 3142528, 82305144, 1329514816, 7685040448, 1, 64, 3871, 215892, 10682325, 440535696, 13598786979, 254821480596, 1681740027657
OFFSET
0,5
COMMENTS
Array read by antidiagonals: (0,1),(0,2),(1,1),(0,3),...
The first column is A082157.
LINKS
Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
FORMULA
T(n, k) = T_2(n, k) where T_2(0, k) = 1, T_2(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*(i+k)^(2*(n-i))*T_2(i, k), n > 0.
EXAMPLE
The array begins:
1, 1, 1, 1, 1, ...;
1, 4, 9, 16, 25, ...;
7, 56, 207, 544, 1175, ...;
142, 1780, 9342, 32848, 91150, ...;
5941, 103392, 709893, 3142528, 10682325, ...;
428856, 9649124, 82305144, 440535696, 1775027000, ...;
47885899, 1329514816, 13598786979, 85529171200, ...;
Antidiagonal triangle begins as:
1;
1, 1;
1, 4, 7;
1, 9, 56, 142;
1, 16, 207, 1780, 5941;
1, 25, 544, 9342, 103392, 428856;
1, 36, 1175, 32848, 709893, 9649124, 47885899;
1, 49, 2232, 91150, 3142528, 82305144, 1329514816, 7685040448;
MATHEMATICA
T[0, _]= 1; T[n_, k_]:= T[n, k]= Sum[Binomial[n, i] (-1)^(n-i-1)*(i + k)^(2n-2i) T[i, k], {i, 0, n-1}];
Table[T[n-k-1, k], {n, 1, 10}, {k, n-1, 1, -1}]//Flatten (* Jean-François Alcover, Aug 29 2019 *)
PROG
(Magma)
function A(n, k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n, j)*(k+j)^(2*n-2*j)*A(j, k): j in [0..n-1]]);
end if;
end function;
A082169:= func< n, k | A(k, n-k+1) >;
[A082169(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
(SageMath)
@CachedFunction
def A(n, k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n, j)*(k+j)^(2*n-2*j)*A(j, k) for j in range(n))
def A082169(n, k): return A(k, n-k+1)
flatten([[A082169(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
CROSSREFS
Sequence in context: A019670 A093436 A343805 * A209634 A340584 A289523
KEYWORD
easy,nonn,tabl
AUTHOR
Valery A. Liskovets, Apr 09 2003
STATUS
approved