Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a046386 -id:a046386
Displaying 1-10 of 61 results found. page 1 2 3 4 5 6 7
     Sort: relevance | references | number | modified | created      Format: long | short | data
A253919 Indices of products of four distinct primes (A046386) in the sequence of products of 4 primes (A014613). +20
1
27, 44, 56, 63, 71, 78, 83, 99, 103, 111, 115, 130, 133, 139, 140, 145, 166, 168, 171, 176, 185, 188, 190, 199, 201, 207, 208, 213, 217, 221, 229, 233, 239, 244, 248, 266, 271, 274, 276, 278, 285, 292, 299, 306, 313, 316, 317, 320, 322, 325, 331, 337, 341, 347, 351, 353, 357, 363, 375, 381, 387, 388, 389, 393, 394, 396, 402 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Or, positions of squarefree numbers in A014613.
LINKS
FORMULA
A014613(a(n))=A046386(n).
EXAMPLE
a(1) = 27 because A014613(27) = A046386(1) = 210 = 2*3*5*7 the first squarefree number in A014613.
a(10000) = 25632 because A014613(25632) = A046386(100000) = 135555 = 2*3*7*1291 10000st squarefree number in A014613.
MATHEMATICA
c = 0; s = {}; Do[If[4 == PrimeOmega[k], c++; If[{1, 1, 1, 1} == (#[[2]] & /@ FactorInteger[k]) , AppendTo[s, c]]], {k, 16, 3000}]; s
(* or *) c = 0; s2 = {}; Do[If[4 == PrimeOmega[k], c++; If[SquareFreeQ[k] , AppendTo[s2, c]]], {k, 16, 3000}]; s2
PROG
(PARI) {c = 0; for (k = 16, 3000, if (4 == bigomega (k), c++; if (issquarefree (k), print1 (c ", "))))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 19 2015
STATUS
approved
A362410 Numbers k such that A000292(k) is in A046386. +20
1
19, 33, 45, 51, 59, 61, 65, 67, 69, 77, 85, 93, 105, 109, 113, 129, 141, 165, 181, 193, 197, 201, 211, 213, 217, 221, 227, 237, 257, 261, 267, 277, 291, 301, 309, 317, 345, 347, 353, 357, 365, 393, 397, 401, 409, 417, 421, 437, 445, 461, 465, 477, 497, 521, 561, 569, 597, 613, 633, 653, 661, 677 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Numbers k such that k*(k+1)*(k+2)/6 is the product of four distinct primes.
All terms are odd.
LINKS
FORMULA
A000292(a(n)) = A353027(n).
EXAMPLE
a(3) = 45 is a term because 45*46*47/6 = 16215 = 3*5*23*47 is the product of four distinct primes.
MAPLE
filter:= k -> ifactors(k*(k+1)*(k+2)/6)[2][.., 2] = [1, 1, 1, 1];
select(filter, [seq(i, i=1..1000, 2)]);
MATHEMATICA
p4dpQ[n_]:=With[{c=(n(n+1)(n+2))/6}, PrimeNu[c]==PrimeOmega[c]==4]; Select[Range[ 700], p4dpQ] (* Harvey P. Dale, May 06 2024 *)
PROG
(PARI) isok(k) = my(t=k*(k+1)*(k+2)/6); (omega(t)==4) && (bigomega(t)==4); \\ Michel Marcus, Apr 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Apr 18 2023
STATUS
approved
A005117 Squarefree numbers: numbers that are not divisible by a square greater than 1.
(Formerly M0617)
+10
1702
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A086436). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A067295. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
REFERENCES
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
Dummit, David S., and Richard M. Foote. Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: Prentice Hall, 1991.
Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..60794 (first 10000 terms from T. D. Noe)
Zenon B. Batang, Squarefree integers and the abc conjecture, arXiv:2109.10226 [math.GM], 2021.
Andrew R. Booker, Ghaith A. Hiary and Jon P. Keating, Detecting squarefree numbers, Duke Mathematical Journal, Vol. 164, No. 2 (2015), pp. 235-275; arXiv preprint, arXiv:1304.6937 [math.NT], 2013-2015.
Iurie Boreico, Linear independence of radicals, The Harvard College Mathematics Review 2(1), 87-92, Spring 2008.
Ernesto Cesàro, La serie di Lambert in aritmetica assintotica, Rendiconto della Reale Accademia delle Scienze di Napoli, Serie 2, Vol. 7 (1893), pp. 197-204.
Henri Cohen, Francois Dress, and Mohamed El Marraki, Explicit estimates for summatory functions linked to the Möbius μ-function, Functiones et Approximatio Commentarii Mathematici 37 (2007), part 1, pp. 51-63.
H. Gent, Letter to N. J. A. Sloane, Nov 27 1975.
Andrew Granville, ABC means we can count squarefrees, International Mathematical Research Notices 19 (1998), 991-1009.
Pentti Haukkanen, Mika Mattila, Jorma K. Merikoski and Timo Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, Vol. 16 (2013), Article 13.1.2.
Aaron Krowne, squarefree number, PlanetMath.org.
Louis Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012.
Srinivasa Ramanujan, Irregular numbers, J. Indian Math. Soc., Vol. 5 (1913), pp. 105-106.
Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proceedings of the American Mathematical Society, Vol. 15, No. 4 (1964), pp. 515-516.
J. A. Scott, Square-freedom revisited, The Mathematical Gazette, Vol. 90, No. 517 (2006), pp. 112-113.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015.
O. Trifonov, On the Squarefree Problem II, Math. Balkanica, Vol. 3 (1989), Fasc. 3-4.
Eric Weisstein's World of Mathematics, Squarefree.
Eric Weisstein's World of Mathematics, Prime Zeta Function.
Wikipedia, Squarefree integer.
FORMULA
Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)
MAPLE
with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
t:= n-> product(ithprime(k), k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
PROG
(Magma) [ n : n in [1..1000] | IsSquarefree(n) ];
(PARI) bnd = 1000; L = vector(bnd); j = 1; for (i=1, bnd, if(issquarefree(i), L[j]=i; j=j+1)); L
(PARI) {a(n)= local(m, c); if(n<=1, n==1, c=1; m=1; while( c<n, m++; if(issquarefree(m), c++)); m)} /* Michael Somos, Apr 29 2005 */
(PARI) list(n)=my(v=vectorsmall(n, i, 1), u, j); forprime(p=2, sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1, n, v[i])); for(i=1, n, if(v[i], u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
(PARI) for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
(PARI)
S(n) = my(s); forsquarefree(k=1, sqrtint(n), s+=n\k[1]^2*moebius(k)); s;
a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
(PARI) first(n)=my(v=vector(n), i); forsquarefree(k=1, if(n<268293, (33*n+30)\20, (n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
(Haskell)
a005117 n = a005117_list !! (n-1)
a005117_list = filter ((== 1) . a008966) [1..]
-- Reinhard Zumkeller, Aug 15 2011, May 10 2011
(Python)
from sympy.ntheory.factor_ import core
def ok(n): return core(n, 2) == n
print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
(Python)
from itertools import count, islice
from sympy import factorint
def A005117_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(x == 1 for x in factorint(n).values()), count(max(startvalue, 1)))
A005117_list = list(islice(A005117_gen(), 20)) # Chai Wah Wu, May 09 2022
(Python)
from math import isqrt
from sympy import mobius
def A005117(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 22 2024
CROSSREFS
Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).
KEYWORD
nonn,easy,nice,core
AUTHOR
STATUS
approved
A006881 Squarefree semiprimes: Numbers that are the product of two distinct primes.
(Formerly M4082)
+10
467
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Numbers k such that phi(k) + sigma(k) = 2*(k+1). - Benoit Cloitre, Mar 02 2002
Numbers k such that tau(k) = omega(k)^omega(k). - Benoit Cloitre, Sep 10 2002 [This comment is false. If k = 900 then tau(k) = omega(k)^omega(k) = 27 but 900 = (2*3*5)^2 is not the product of two distinct primes. - Peter Luschny, Jul 12 2023]
Could also be called 2-almost primes. - Rick L. Shepherd, May 11 2003
From the Goldston et al. reference's abstract: "lim inf [as n approaches infinity] [(a(n+1) - a(n))] <= 26. If an appropriate generalization of the Elliott-Halberstam Conjecture is true, then the above bound can be improved to 6." - Jonathan Vos Post, Jun 20 2005
The maximal number of consecutive integers in this sequence is 3 - there cannot be 4 consecutive integers because one of them would be divisible by 4 and therefore would not be product of distinct primes. There are several examples of 3 consecutive integers in this sequence. The first one is 33 = 3 * 11, 34 = 2 * 17, 35 = 5 * 7; (see A039833). - Matias Saucedo (solomatias(AT)yahoo.com.ar), Mar 15 2008
Number of terms less than or equal to 10^k for k >= 0 is A036351(k). - Robert G. Wilson v, Jun 26 2012
Are these the numbers k whose difference between the sum of proper divisors of k and the arithmetic derivative of k is equal to 1? - Omar E. Pol, Dec 19 2012
Intersection of A001358 and A030513. - Wesley Ivan Hurt, Sep 09 2013
A237114(n) (smallest semiprime k^prime(n)+1) is a term, for n != 2. - Jonathan Sondow, Feb 06 2014
a(n) are the reduced denominators of p_2/p_1 + p_4/p_3, where p_1 != p_2, p_3 != p_4, p_1 != p_3, and the p's are primes. In other words, (p_2*p_3 + p_1*p_4) never shares a common factor with p_1*p_3. - Richard R. Forberg, Mar 04 2015
Conjecture: The sums of two elements of a(n) forms a set that includes all primes greater than or equal to 29 and all integers greater than or equal to 83 (and many below 83). - Richard R. Forberg, Mar 04 2015
The (disjoint) union of this sequence and A001248 is A001358. - Jason Kimberley, Nov 12 2015
A263990 lists the subsequence of a(n) where a(n+1)=1+a(n). - R. J. Mathar, Aug 13 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Zervos, Marie: Sur une classe de nombres composés. Actes du Congrès interbalkanique de mathématiciens 267-268 (1935)
LINKS
D. A. Goldston, S. W. Graham, J. Pimtz and Y. Yildirim, "Small Gaps Between Primes or Almost Primes", arXiv:math/0506067 [math.NT], March 2005.
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)
R. J. Mathar, Series of reciprocal powers of k-almost primes arXiv:0803.0900, table 6 k=2 shows sum 1/a(n)^s.
Eric Weisstein's World of Mathematics, Semiprime
FORMULA
A000005(a(n)^(k-1)) = A000290(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
A109810(a(n)) = 4; A178254(a(n)) = 6. - Reinhard Zumkeller, May 24 2010
A056595(a(n)) = 3. - Reinhard Zumkeller, Aug 15 2011
a(n) = A096916(n) * A070647(n). - Reinhard Zumkeller, Sep 23 2011
A211110(a(n)) = 3. - Reinhard Zumkeller, Apr 02 2012
Sum_{n >= 1} 1/a(n)^s = (1/2)*(P(s)^2 - P(2*s)), where P is Prime Zeta. - Enrique Pérez Herrero, Jun 24 2012
A050326(a(n)) = 2. - Reinhard Zumkeller, May 03 2013
sopf(a(n)) = a(n) - phi(a(n)) + 1 = sigma(a(n)) - a(n) - 1. - Wesley Ivan Hurt, May 18 2013
d(a(n)) = 4. Omega(a(n)) = 2. omega(a(n)) = 2. mu(a(n)) = 1. - Wesley Ivan Hurt, Jun 28 2013
a(n) ~ n log n/log log n. - Charles R Greathouse IV, Aug 22 2013
A089233(a(n)) = 1. - Reinhard Zumkeller, Sep 04 2013
From Peter Luschny, Jul 12 2023: (Start)
For k > 1: k is term of a <=> k^A001221(k) = k*A007947(k).
For k > 1: k is term of a <=> k^A001222(k) = k*A007947(k).
For k > 1: k is term of a <=> A363923(k) = k. (End)
MAPLE
N:= 1001: # to get all terms < N
Primes:= select(isprime, [2, seq(2*k+1, k=1..floor(N/2))]):
{seq(seq(p*q, q=Primes[1..ListTools:-BinaryPlace(Primes, N/p)]), p=Primes)} minus {seq(p^2, p=Primes)};
# Robert Israel, Jul 23 2014
# Alternative, using A001221:
isA006881 := proc(n)
if numtheory[bigomega](n) =2 and A001221(n) = 2 then
true ;
else
false ;
end if;
end proc:
A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if isA006881(a) then return a; end if; end do: end if;
end proc: # R. J. Mathar, May 02 2010
# Alternative:
with(NumberTheory): isA006881 := n -> is(NumberOfPrimeFactors(n, 'distinct') = 2 and NumberOfPrimeFactors(n) = 2):
select(isA006881, [seq(1..205)]); # Peter Luschny, Jul 12 2023
MATHEMATICA
mx = 205; Sort@ Flatten@ Table[ Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[ mx/Prime[n]]}] (* Robert G. Wilson v, Dec 28 2005, modified Jul 23 2014 *)
sqFrSemiPrimeQ[n_] := Last@# & /@ FactorInteger@ n == {1, 1}; Select[Range[210], sqFrSemiPrimeQ] (* Robert G. Wilson v, Feb 07 2012 *)
With[{upto=250}, Select[Sort[Times@@@Subsets[Prime[Range[upto/2]], {2}]], #<=upto&]] (* Harvey P. Dale, Apr 30 2018 *)
PROG
(PARI) for(n=1, 214, if(bigomega(n)==2&&omega(n)==2, print1(n, ", ")))
(PARI) for(n=1, 214, if(bigomega(n)==2&&issquarefree(n), print1(n, ", ")))
(PARI) list(lim)=my(v=List()); forprime(p=2, sqrt(lim), forprime(q=p+1, lim\p, listput(v, p*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
(Haskell)
a006881 n = a006881_list !! (n-1)
a006881_list = filter chi [1..] where
chi n = p /= q && a010051 q == 1 where
p = a020639 n
q = n `div` p
-- Reinhard Zumkeller, Aug 07 2011
(Sage)
def A006881_list(n) :
R = []
for i in (6..n) :
d = prime_divisors(i)
if len(d) == 2 :
if d[0]*d[1] == i :
R.append(i)
return R
A006881_list(205) # Peter Luschny, Feb 07 2012
(Magma) [n: n in [1..210] | EulerPhi(n) + DivisorSigma(1, n) eq 2*(n+1)]; // Vincenzo Librandi, Sep 17 2015
(Python)
from sympy import factorint
def ok(n): f=factorint(n); return len(f) == 2 and sum(f[p] for p in f) == 2
print(list(filter(ok, range(1, 206)))) # Michael S. Branicky, Jun 10 2021
(Python)
from math import isqrt
from sympy import primepi, primerange
def A006881(n):
def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 15 2024
CROSSREFS
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A030229, A051709, A001221 (omega(n)), A001222 (bigomega(n)), A001358 (semiprimes), A005117 (squarefree), A007304 (squarefree 3-almost primes), A213952, A039833, A016105 (subsequences), A237114 (subsequence, n != 2).
Subsequence of A007422.
Cf. A259758 (subsequence), A036351, A363923.
KEYWORD
nonn,easy,nice,changed
AUTHOR
EXTENSIONS
Name expanded (based on a comment of Rick L. Shepherd) by Charles R Greathouse IV, Sep 16 2015
STATUS
approved
A007304 Sphenic numbers: products of 3 distinct primes.
(Formerly M5207)
+10
189
30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426, 429, 430, 434, 435, 438 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Note the distinctions between this and "n has exactly three prime factors" (A014612) or "n has exactly three distinct prime factors." (A033992). The word "sphenic" also means "shaped like a wedge" [American Heritage Dictionary] as in dentation with "sphenic molars." - Jonathan Vos Post, Sep 11 2005
Also the volume of a sphenic brick. A sphenic brick is a rectangular parallelepiped whose sides are components of a sphenic number, namely whose sides are three distinct primes. Example: The distinct prime triple (3,5,7) produces a 3x5x7 unit brick which has volume 105 cubic units. 3-D analog of 2-D A037074 Product of twin primes, per Cino Hilliard's comment. Compare with 3-D A107768 Golden 3-almost primes = Volumes of bricks (rectangular parallelepipeds) each of whose faces has golden semiprime area. - Jonathan Vos Post, Jan 08 2007
Sum(n>=1, 1/a(n)^s) = (1/6)*(P(s)^3 - P(3*s) - 3*(P(s)*P(2*s)-P(3*s))), where P is prime Zeta function. - Enrique Pérez Herrero, Jun 28 2012
Also numbers n with A001222(n)=3 and A001221(n)=3. - Enrique Pérez Herrero, Jun 28 2012
n = 265550 is the smallest n with a(n) (=1279789) < A006881(n) (=1279793). - Peter Dolland, Apr 11 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
"Sphenic", The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Company, 2000.
LINKS
FORMULA
A008683(a(n)) = -1.
A000005(a(n)) = 8. - R. J. Mathar, Aug 14 2009
A002033(a(n)-1) = 13. - Juri-Stepan Gerasimov, Oct 07 2009, R. J. Mathar, Oct 14 2009
A178254(a(n)) = 36. - Reinhard Zumkeller, May 24 2010
A050326(a(n)) = 5, subsequence of A225228. - Reinhard Zumkeller, May 03 2013
a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015
EXAMPLE
From Gus Wiseman, Nov 05 2020: (Start)
Also Heinz numbers of strict integer partitions into three parts, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are counted by A001399(n-6) = A069905(n-3), with ordered version A001399(n-6)*6. The sequence of terms together with their prime indices begins:
30: {1,2,3} 182: {1,4,6} 286: {1,5,6}
42: {1,2,4} 186: {1,2,11} 290: {1,3,10}
66: {1,2,5} 190: {1,3,8} 310: {1,3,11}
70: {1,3,4} 195: {2,3,6} 318: {1,2,16}
78: {1,2,6} 222: {1,2,12} 322: {1,4,9}
102: {1,2,7} 230: {1,3,9} 345: {2,3,9}
105: {2,3,4} 231: {2,4,5} 354: {1,2,17}
110: {1,3,5} 238: {1,4,7} 357: {2,4,7}
114: {1,2,8} 246: {1,2,13} 366: {1,2,18}
130: {1,3,6} 255: {2,3,7} 370: {1,3,12}
138: {1,2,9} 258: {1,2,14} 374: {1,5,7}
154: {1,4,5} 266: {1,4,8} 385: {3,4,5}
165: {2,3,5} 273: {2,4,6} 399: {2,4,8}
170: {1,3,7} 282: {1,2,15} 402: {1,2,19}
174: {1,2,10} 285: {2,3,8} 406: {1,4,10}
(End)
MAPLE
with(numtheory): a:=proc(n) if bigomega(n)=3 and nops(factorset(n))=3 then n else fi end: seq(a(n), n=1..450); # Emeric Deutsch
A007304 := proc(n)
option remember;
local a;
if n =1 then
30;
else
for a from procname(n-1)+1 do
if bigomega(a)=3 and nops(factorset(a))=3 then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Dec 06 2016
MATHEMATICA
Union[Flatten[Table[Prime[n]*Prime[m]*Prime[k], {k, 20}, {n, k+1, 20}, {m, n+1, 20}]]]
Take[ Sort@ Flatten@ Table[ Prime@i Prime@j Prime@k, {i, 3, 21}, {j, 2, i - 1}, {k, j - 1}], 53] (* Robert G. Wilson v *)
With[{upto=500}, Sort[Select[Times@@@Subsets[Prime[Range[Ceiling[upto/6]]], {3}], #<=upto&]]] (* Harvey P. Dale, Jan 08 2015 *)
Select[Range[100], SquareFreeQ[#]&&PrimeOmega[#]==3&] (* Gus Wiseman, Nov 05 2020 *)
PROG
(PARI) for(n=1, 1e4, if(bigomega(n)==3 && omega(n)==3, print1(n", "))) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim)^(1/3), forprime(q=p+1, sqrt(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
(Haskell)
a007304 n = a007304_list !! (n-1)
a007304_list = filter f [1..] where
f u = p < q && q < w && a010051 w == 1 where
p = a020639 u; v = div u p; q = a020639 v; w = div v q
-- Reinhard Zumkeller, Mar 23 2014
CROSSREFS
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A162143 (a(n)^2).
For the following, NNS means "not necessarily strict".
A014612 is the NNS version.
A046389 is the restriction to odds (NNS: A046316).
A075819 is the restriction to evens (NNS: A075818).
A239656 gives first differences.
A285508 lists terms of A014612 that are not squarefree.
A307534 is the case where all prime indices are odd (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338557 is the case where all prime indices are even (NNS: A338556).
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers.
A008289 counts strict partitions by sum and length.
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Jan 04 2006
Comment concerning number of divisors corrected by R. J. Mathar, Aug 14 2009
STATUS
approved
A101296 n has the a(n)-th distinct prime signature. +10
109
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 13, 2, 4, 6, 14, 4, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 4, 9, 2, 12, 7, 4, 2, 13, 4, 4, 4, 8, 2, 13, 4, 6, 4, 4, 4, 16, 2, 6, 6, 11, 2, 9, 2, 8, 9, 4, 2, 15, 2, 9, 4, 12, 2, 9, 4, 6, 6, 4, 4, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
From Antti Karttunen, May 12 2017: (Start)
Restricted growth sequence transform of A046523, the least representative of each prime signature. Thus this partitions the natural numbers to the same equivalence classes as A046523, i.e., for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j), and for that reason satisfies in that respect all the same conditions as A046523. For example, we have, for all i, j: if a(i) = a(j), then:
A000005(i) = A000005(j), A008683(i) = A008683(j), A286605(i) = A286605(j).
So, this sequence (instead of A046523) can be used for finding sequences where a(n)'s value is dependent only on the prime signature of n, that is, only on the multiset of prime exponents in the factorization of n. (End)
This is also the restricted growth sequence transform of many other sequences, for example, that of A181819. See further comments there. - Antti Karttunen, Apr 30 2022
LINKS
Michel Marcus (terms 1..10000) & Antti Karttunen, Table of n, a(n) for n = 1..100000
FORMULA
A025487(a(n)) = A046523(n).
Indices of records give A025487. - Michel Marcus, Nov 16 2015
From David A. Corneth, May 12 2017: (Start) [Corresponding characteristic function in brackets]
a(A000012(n)) = 1 (sig.: ()). [A063524]
a(A000040(n)) = 2 (sig.: (1)). [A010051]
a(A001248(n)) = 3 (sig.: (2)). [A302048]
a(A006881(n)) = 4 (sig.: (1,1)). [A280710]
a(A030078(n)) = 5 (sig.: (3)).
a(A054753(n)) = 6 (sig.: (1,2)). [A353472]
a(A030514(n)) = 7 (sig.: (4)).
a(A065036(n)) = 8 (sig.: (1,3)).
a(A007304(n)) = 9 (sig.: (1,1,1)). [A354926]
a(A050997(n)) = 10 (sig.: (5)).
a(A085986(n)) = 11 (sig.: (2,2)).
a(A178739(n)) = 12 (sig.: (1,4)).
a(A085987(n)) = 13 (sig.: (1,1,2)).
a(A030516(n)) = 14 (sig.: (6)).
a(A143610(n)) = 15 (sig.: (2,3)).
a(A178740(n)) = 16 (sig.: (1,5)).
a(A189975(n)) = 17 (sig.: (1,1,3)).
a(A092759(n)) = 18 (sig.: (7)).
a(A189988(n)) = 19 (sig.: (2,4)).
a(A179643(n)) = 20 (sig.: (1,2,2)).
a(A189987(n)) = 21 (sig.: (1,6)).
a(A046386(n)) = 22 (sig.: (1,1,1,1)).
a(A162142(n)) = 23 (sig.: (2,2,2)).
a(A179644(n)) = 24 (sig.: (1,1,4)).
a(A179645(n)) = 25 (sig.: (8)).
a(A179646(n)) = 26 (sig.: (2,5)).
a(A163569(n)) = 27 (sig.: (1,2,3)).
a(A179664(n)) = 28 (sig.: (1,7)).
a(A189982(n)) = 29 (sig.: (1,1,1,2)).
a(A179666(n)) = 30 (sig.: (3,4)).
a(A179667(n)) = 31 (sig.: (1,1,5)).
a(A179665(n)) = 32 (sig.: (9).
a(A189990(n)) = 33 (sig.: (2,6)).
a(A179669(n)) = 34 (sig.: (1,2,4)).
a(A179668(n)) = 35 (sig.: (1,8)).
a(A179670(n)) = 36 (sig.: (1,1,1,3)).
a(A179671(n)) = 37 (sig.: (3,5)).
a(A162143(n)) = 38 (sig.: (2,2,2)).
a(A179672(n)) = 39 (sig.: (1,1,6)).
a(A030629(n)) = 40 (sig.: (10)).
a(A179688(n)) = 41 (sig.: (1,3,3)).
a(A179689(n)) = 42 (sig.: (2,7)).
a(A179690(n)) = 43 (sig.: (1,1,2,2)).
a(A189991(n)) = 44 (sig.: (4,4)).
a(A179691(n)) = 45 (sig.: (1,2,5)).
a(A179692(n)) = 46 (sig.: (1,9)).
a(A179693(n)) = 47 (sig.: (1,1,1,4)).
a(A179694(n)) = 48 (sig.: (3,6)).
a(A179695(n)) = 49 (sig.: (2,2,3)).
a(A179696(n)) = 50 (sig.: (1,1,7)).
(End)
EXAMPLE
From David A. Corneth, May 12 2017: (Start)
1 has prime signature (), the first distinct prime signature. Therefore, a(1) = 1.
2 has prime signature (1), the second distinct prime signature after (1). Therefore, a(2) = 2.
3 has prime signature (1), as does 2. Therefore, a(3) = a(2) = 2.
4 has prime signature (2), the third distinct prime signature after () and (1). Therefore, a(4) = 3. (End)
From Antti Karttunen, May 12 2017: (Start)
Construction of restricted growth sequences: In this case we start with a(1) = 1 for A046523(1) = 1, and thereafter, for all n > 1, we use the least so far unused natural number k for a(n) if A046523(n) has not been encountered before, otherwise [whenever A046523(n) = A046523(m), for some m < n], we set a(n) = a(m).
For n = 2, A046523(2) = 2, which has not been encountered before (first prime), thus we allot for a(2) the least so far unused number, which is 2, thus a(2) = 2.
For n = 3, A046523(2) = 2, which was already encountered as A046523(1), thus we set a(3) = a(2) = 2.
For n = 4, A046523(4) = 4, not encountered before (first square of prime), thus we allot for a(4) the least so far unused number, which is 3, thus a(4) = 3.
For n = 5, A046523(5) = 2, as for the first time encountered at n = 2, thus we set a(5) = a(2) = 2.
For n = 6, A046523(6) = 6, not encountered before (first semiprime pq with distinct p and q), thus we allot for a(6) the least so far unused number, which is 4, thus a(6) = 4.
For n = 8, A046523(8) = 8, not encountered before (first cube of a prime), thus we allot for a(8) the least so far unused number, which is 5, thus a(8) = 5.
For n = 9, A046523(9) = 4, as for the first time encountered at n = 4, thus a(9) = 3.
(End)
From David A. Corneth, May 12 2017: (Start)
(Rough) description of an algorithm of computing the sequence:
Suppose we want to compute a(n) for n in [1..20].
We set up a vector of 20 elements, values 0, and a number m = 1, the minimum number we haven't checked and c = 0, the number of distinct prime signatures we've found so far.
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We check the prime signature of m and see that it's (). We increase c with 1 and set all elements up to 20 with prime signature () to 1. In the process, we adjust m. This gives:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The least number we haven't checked is m = 2. 2 has prime signature (1). We increase c with 1 and set all elements up to 20 with prime signature (1) to 2. In the process, we adjust m. This gives:
[1, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
We check the prime signature of m = 4 and see that its prime signature is (2). We increase c with 1 and set all numbers up to 20 with prime signature (2) to 3. This gives:
[1, 2, 2, 3, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
Similarily, after m = 6, we get
[1, 2, 2, 3, 2, 4, 2, 0, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 8 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 12 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 0, 2, 6, 2, 0], after m = 16 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 0], after m = 20 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 8]. Now, m > 20 so we stop. (End)
The above method is inefficient, because the step "set all elements a(n) up to n = Nmax with prime signature s(n) = S[c] to c" requires factoring all integers up to Nmax (or at least comparing their signature, once computed, with S[c]) again and again. It is much more efficient to run only once over each m = 1..Nmax, compute its prime signature s(m), add it to an ordered list in case it did not occur earlier, together with its "rank" (= new size of the list), and assign that rank to a(m). The list of prime signatures is much shorter than [1..Nmax]. One can also use m'(m) := the smallest n with the prime signature of m (which is faster to compute than to search for the signature) as representative for s(m), and set a(m) := a(m'(m)). Then it is sufficient to have just one counter (number of prime signatures seen so far) as auxiliary variable, in addition to the sequence to be computed. - M. F. Hasler, Jul 18 2019
MAPLE
A101296 := proc(n)
local a046523, a;
a046523 := A046523(n) ;
for a from 1 do
if A025487(a) = a046523 then
return a;
elif A025487(a) > a046523 then
return -1 ;
end if;
end do:
end proc: # R. J. Mathar, May 26 2017
MATHEMATICA
With[{nn = 120}, Function[s, Table[Position[Keys@s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], {n, nn}] ] (* Michael De Vlieger, May 12 2017, Version 10 *)
PROG
(PARI) find(ps, vps) = {for (k=1, #vps, if (vps[k] == ps, return(k)); ); }
lisps(nn) = {vps = []; for (n=1, nn, ps = vecsort(factor(n)[, 2]); ips = find(ps, vps); if (! ips, vps = concat(vps, ps); ips = #vps); print1(ips, ", "); ); } \\ Michel Marcus, Nov 15 2015; edited by M. F. Hasler, Jul 16 2019
(PARI)
rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences, invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences, invec[i], i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
write_to_bfile(1, rgs_transform(vector(100000, n, A046523(n))), "b101296.txt");
\\ Antti Karttunen, May 12 2017
CROSSREFS
Cf. A025487, A046523, A064839 (ordinal transform of this sequence), A181819, and arrays A095904, A179216.
Sequences that are unions of finite number (>= 2) of equivalence classes determined by the values that this sequence obtains (i.e., sequences mentioned in David A. Corneth's May 12 2017 formula): A001358 (A001248 U A006881, values 3 & 4), A007422 (values 1, 4, 5), A007964 (2, 3, 4, 5), A014612 (5, 6, 9), A030513 (4, 5), A037143 (1, 2, 3, 4), A037144 (1, 2, 3, 4, 5, 6, 9), A080258 (6, 7), A084116 (2, 4, 5), A167171 (2, 4), A217856 (6, 9).
Cf. also A077462, A305897 (stricter variants, with finer partitioning) and A254524, A286603, A286605, A286610, A286619, A286621, A286622, A286626, A286378 for other similarly constructed sequences.
KEYWORD
easy,nonn
AUTHOR
David Wasserman, Dec 21 2004
EXTENSIONS
Data section extended to 120 terms by Antti Karttunen, May 12 2017
Minor edits/corrections by M. F. Hasler, Jul 18 2019
STATUS
approved
A007774 Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2. +10
65
6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Every group of order p^a * q^b is solvable (Burnside, 1904). - Franz Vrabec, Sep 14 2008
Characteristic function for a(n): floor(omega(n)/2) * floor(2/omega(n)) where omega(n) is the number of distinct prime factors of n. - Wesley Ivan Hurt, Jan 10 2013
LINKS
W. Burnside, On groups of order p^alpha q^beta, Proc. London Math. Soc. (2) 1 (1904), 388-392.
Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
EXAMPLE
20 is a term because 20 = 2^2*5 with two distinct prime divisors 2, 5.
MAPLE
with(numtheory, factorset):f := proc(n) if nops(factorset(n))=2 then RETURN(n) fi; end;
MATHEMATICA
Select[Range[0, 6! ], Length[FactorInteger[ # ]]==2&] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
Select[Range[120], PrimeNu[#]==2&] (* Harvey P. Dale, Jun 03 2020 *)
PROG
(Haskell)
a007774 n = a007774_list !! (n-1)
a007774_list = filter ((== 2) . a001221) [1..]
-- Reinhard Zumkeller, Aug 02 2012
(PARI) is(n)=omega(n)==2 \\ Charles R Greathouse IV, Apr 01 2013
(Python)
from sympy import primefactors
A007774_list = [n for n in range(1, 10**5) if len(primefactors(n)) == 2] # Chai Wah Wu, Aug 23 2021
CROSSREFS
Subsequence of A085736; A256617 is a subsequence.
Row 2 of A125666.
Cf. A001358 (products of two primes), A014612 (products of three primes), A014613 (products of four primes), A014614 (products of five primes), where the primes are not necessarily distinct.
Cf. A006881, A046386, A046387, A067885 (product of exactly 2, 4, 5, 6 distinct primes respectively).
KEYWORD
nonn
AUTHOR
Luke Pebody (ltp1000(AT)hermes.cam.ac.uk)
EXTENSIONS
Expanded definition. - N. J. A. Sloane, Aug 22 2021
STATUS
approved
A085986 Squares of the squarefree semiprimes (p^2*q^2). +10
45
36, 100, 196, 225, 441, 484, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 16641, 17689, 17956, 19881 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This sequence is a member of a family of sequences directly related to A025487. First terms and known sequences are listed below: 1, A000007; 2, A000040; 4, A001248; 6, A006881; 8, A030078; 12, A054753; 16, A030514; 24, A065036; 30, A007304; 32, A050997; 36, this sequence; 48, ?; 60, ?; 64, ?; ....
Subsequence of A077448. The numbers in A077448 but not in here are 1, the squares of A046386, the squares of A067885, etc. - R. J. Mathar, Sep 12 2008
a(4)-a(3)=29 and a(3)+a(4)=421 are both prime. There are no other cases where the sum and difference of two members of this sequence are both prime. - Robert Israel and J. M. Bergot, Oct 25 2019
LINKS
FORMULA
a(n) = A006881(n)^2.
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 = (A085548^2 - A085964)/2 = 0.063767..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
EXAMPLE
A006881 begins 6 10 14 15 ... so this sequence begins 36 100 196 225 ...
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 2}; Select[Range[20000], f] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2009 *)
Select[Range[200], PrimeOmega[#]==2&&SquareFreeQ[#]&]^2 (* Harvey P. Dale, Mar 07 2013 *)
PROG
(PARI) list(lim)=my(v=List(), x=sqrtint(lim\=1), t); forprime(p=2, x\2, t=p; forprime(q=2, min(x\t, p-1), listput(v, (t*q)^2))); Set(v) \\ Charles R Greathouse IV, Sep 22 2015
(PARI) is(n)=factor(n)[, 2]==[2, 2]~ \\ Charles R Greathouse IV, Oct 19 2015
(Magma) [k^2:k in [1..150]| IsSquarefree(k) and #PrimeDivisors(k) eq 2]; // Marius A. Burtea, Oct 24 2019
CROSSREFS
Subsequence of A036785 and of A077448.
Subsequence of A062503.
Cf. A025487.
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Jul 06 2003
STATUS
approved
A046387 Products of exactly 5 distinct primes. +10
33
2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6270, 6510, 6630, 7410, 7590, 7770, 7854, 8610, 8778, 8970, 9030, 9282, 9570, 9690, 9870, 10010, 10230, 10374, 10626, 11130, 11310, 11730, 12090, 12210, 12390, 12558, 12810, 13090, 13110 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Subsequence of A051270. 4620 = 2^2*3*5*7*11 is in A051270 but not in here, for example. - R. J. Mathar, Nov 10 2014
LINKS
EXAMPLE
a(1) = 2310 = 2 * 3 * 5 * 7 * 11 = A002110(5) = 5#.
a(2) = 2730 = 2 * 3 * 5 * 7 * 13.
a(3) = 3570 = 2 * 3 * 5 * 7 * 17.
a(10) = 6006 = 2 * 3 * 7 * 11 * 13.
MAPLE
A046387 := proc(n)
option remember;
local a;
if n = 1 then
2*3*5*7*11 ;
else
for a from procname(n-1)+1 do
if A001221(a)= 5 and issqrfree(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Oct 13 2019
MATHEMATICA
f5Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1}; lst={}; Do[If[f5Q[n], AppendTo[lst, n]], {n, 8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
PROG
(PARI) is(n)=factor(n)[, 2]==[1, 1, 1, 1, 1]~ \\ Charles R Greathouse IV, Sep 17 2015
(PARI) is(n)= omega(n)==5 && bigomega(n)==5 \\ Hugo Pfoertner, Dec 18 2018
CROSSREFS
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
KEYWORD
easy,nonn
AUTHOR
Patrick De Geest, Jun 15 1998
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 10 2006
STATUS
approved
A085987 Product of exactly four primes, three of which are distinct (p^2*q*r). +10
33
60, 84, 90, 126, 132, 140, 150, 156, 198, 204, 220, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 444, 460, 476, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 726 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
A014613 is completely determined by A030514, A065036, A085986, A085987 and A046386 since p(4) = 5. (cf. A000041). More generally, the first term of sequences which completely determine the k-almost primes can be found in A036035 (a resorted version of A025487).
A050326(a(n)) = 4. - Reinhard Zumkeller, May 03 2013
LINKS
EXAMPLE
a(1) = 60 since 60 = 2*2*3*5 and has three distinct prime factors.
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 2}; Select[Range[2000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
pefp[{a_, b_, c_}]:={a^2 b c, a b^2 c, a b c^2}; Module[{upto=800}, Select[ Flatten[ pefp/@Subsets[Prime[Range[PrimePi[upto/6]]], {3}]]//Union, #<= upto&]] (* Harvey P. Dale, Oct 02 2018 *)
PROG
(PARI) list(lim)=my(v=List(), t, x, y, z); forprime(p=2, lim^(1/4), t=lim\p^2; forprime(q=p+1, sqrtint(t), forprime(r=q+1, t\q, x=p^2*q*r; y=p*q^2*r; listput(v, x); if(y<=lim, listput(v, y); z=p*q*r^2; if(z<=lim, listput(v, z)))))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 15 2011
(PARI) is(n)=vecsort(factor(n)[, 2]~)==[1, 1, 2] \\ Charles R Greathouse IV, Oct 19 2015
CROSSREFS
Subsequence of A014613, A307341, A178212.
KEYWORD
nonn
AUTHOR
Alford Arnold, Jul 08 2003
EXTENSIONS
More terms from Reinhard Zumkeller, Jul 25 2003
STATUS
approved
page 1 2 3 4 5 6 7

Search completed in 0.039 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 13:06 EDT 2024. Contains 375269 sequences. (Running on oeis4.)