Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a178740 -id:a178740
     Sort: relevance | references | number | modified | created      Format: long | short | data
n has the a(n)-th distinct prime signature.
+10
109
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 13, 2, 4, 6, 14, 4, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 4, 9, 2, 12, 7, 4, 2, 13, 4, 4, 4, 8, 2, 13, 4, 6, 4, 4, 4, 16, 2, 6, 6, 11, 2, 9, 2, 8, 9, 4, 2, 15, 2, 9, 4, 12, 2, 9, 4, 6, 6, 4, 4, 17
OFFSET
1,2
COMMENTS
From Antti Karttunen, May 12 2017: (Start)
Restricted growth sequence transform of A046523, the least representative of each prime signature. Thus this partitions the natural numbers to the same equivalence classes as A046523, i.e., for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j), and for that reason satisfies in that respect all the same conditions as A046523. For example, we have, for all i, j: if a(i) = a(j), then:
A000005(i) = A000005(j), A008683(i) = A008683(j), A286605(i) = A286605(j).
So, this sequence (instead of A046523) can be used for finding sequences where a(n)'s value is dependent only on the prime signature of n, that is, only on the multiset of prime exponents in the factorization of n. (End)
This is also the restricted growth sequence transform of many other sequences, for example, that of A181819. See further comments there. - Antti Karttunen, Apr 30 2022
LINKS
Michel Marcus (terms 1..10000) & Antti Karttunen, Table of n, a(n) for n = 1..100000
FORMULA
A025487(a(n)) = A046523(n).
Indices of records give A025487. - Michel Marcus, Nov 16 2015
From David A. Corneth, May 12 2017: (Start) [Corresponding characteristic function in brackets]
a(A000012(n)) = 1 (sig.: ()). [A063524]
a(A000040(n)) = 2 (sig.: (1)). [A010051]
a(A001248(n)) = 3 (sig.: (2)). [A302048]
a(A006881(n)) = 4 (sig.: (1,1)). [A280710]
a(A030078(n)) = 5 (sig.: (3)).
a(A054753(n)) = 6 (sig.: (1,2)). [A353472]
a(A030514(n)) = 7 (sig.: (4)).
a(A065036(n)) = 8 (sig.: (1,3)).
a(A007304(n)) = 9 (sig.: (1,1,1)). [A354926]
a(A050997(n)) = 10 (sig.: (5)).
a(A085986(n)) = 11 (sig.: (2,2)).
a(A178739(n)) = 12 (sig.: (1,4)).
a(A085987(n)) = 13 (sig.: (1,1,2)).
a(A030516(n)) = 14 (sig.: (6)).
a(A143610(n)) = 15 (sig.: (2,3)).
a(A178740(n)) = 16 (sig.: (1,5)).
a(A189975(n)) = 17 (sig.: (1,1,3)).
a(A092759(n)) = 18 (sig.: (7)).
a(A189988(n)) = 19 (sig.: (2,4)).
a(A179643(n)) = 20 (sig.: (1,2,2)).
a(A189987(n)) = 21 (sig.: (1,6)).
a(A046386(n)) = 22 (sig.: (1,1,1,1)).
a(A162142(n)) = 23 (sig.: (2,2,2)).
a(A179644(n)) = 24 (sig.: (1,1,4)).
a(A179645(n)) = 25 (sig.: (8)).
a(A179646(n)) = 26 (sig.: (2,5)).
a(A163569(n)) = 27 (sig.: (1,2,3)).
a(A179664(n)) = 28 (sig.: (1,7)).
a(A189982(n)) = 29 (sig.: (1,1,1,2)).
a(A179666(n)) = 30 (sig.: (3,4)).
a(A179667(n)) = 31 (sig.: (1,1,5)).
a(A179665(n)) = 32 (sig.: (9)).
a(A189990(n)) = 33 (sig.: (2,6)).
a(A179669(n)) = 34 (sig.: (1,2,4)).
a(A179668(n)) = 35 (sig.: (1,8)).
a(A179670(n)) = 36 (sig.: (1,1,1,3)).
a(A179671(n)) = 37 (sig.: (3,5)).
a(A162143(n)) = 38 (sig.: (2,2,2)).
a(A179672(n)) = 39 (sig.: (1,1,6)).
a(A030629(n)) = 40 (sig.: (10)).
a(A179688(n)) = 41 (sig.: (1,3,3)).
a(A179689(n)) = 42 (sig.: (2,7)).
a(A179690(n)) = 43 (sig.: (1,1,2,2)).
a(A189991(n)) = 44 (sig.: (4,4)).
a(A179691(n)) = 45 (sig.: (1,2,5)).
a(A179692(n)) = 46 (sig.: (1,9)).
a(A179693(n)) = 47 (sig.: (1,1,1,4)).
a(A179694(n)) = 48 (sig.: (3,6)).
a(A179695(n)) = 49 (sig.: (2,2,3)).
a(A179696(n)) = 50 (sig.: (1,1,7)).
(End)
EXAMPLE
From David A. Corneth, May 12 2017: (Start)
1 has prime signature (), the first distinct prime signature. Therefore, a(1) = 1.
2 has prime signature (1), the second distinct prime signature after (1). Therefore, a(2) = 2.
3 has prime signature (1), as does 2. Therefore, a(3) = a(2) = 2.
4 has prime signature (2), the third distinct prime signature after () and (1). Therefore, a(4) = 3. (End)
From Antti Karttunen, May 12 2017: (Start)
Construction of restricted growth sequences: In this case we start with a(1) = 1 for A046523(1) = 1, and thereafter, for all n > 1, we use the least so far unused natural number k for a(n) if A046523(n) has not been encountered before, otherwise [whenever A046523(n) = A046523(m), for some m < n], we set a(n) = a(m).
For n = 2, A046523(2) = 2, which has not been encountered before (first prime), thus we allot for a(2) the least so far unused number, which is 2, thus a(2) = 2.
For n = 3, A046523(2) = 2, which was already encountered as A046523(1), thus we set a(3) = a(2) = 2.
For n = 4, A046523(4) = 4, not encountered before (first square of prime), thus we allot for a(4) the least so far unused number, which is 3, thus a(4) = 3.
For n = 5, A046523(5) = 2, as for the first time encountered at n = 2, thus we set a(5) = a(2) = 2.
For n = 6, A046523(6) = 6, not encountered before (first semiprime pq with distinct p and q), thus we allot for a(6) the least so far unused number, which is 4, thus a(6) = 4.
For n = 8, A046523(8) = 8, not encountered before (first cube of a prime), thus we allot for a(8) the least so far unused number, which is 5, thus a(8) = 5.
For n = 9, A046523(9) = 4, as for the first time encountered at n = 4, thus a(9) = 3.
(End)
From David A. Corneth, May 12 2017: (Start)
(Rough) description of an algorithm of computing the sequence:
Suppose we want to compute a(n) for n in [1..20].
We set up a vector of 20 elements, values 0, and a number m = 1, the minimum number we haven't checked and c = 0, the number of distinct prime signatures we've found so far.
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We check the prime signature of m and see that it's (). We increase c with 1 and set all elements up to 20 with prime signature () to 1. In the process, we adjust m. This gives:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The least number we haven't checked is m = 2. 2 has prime signature (1). We increase c with 1 and set all elements up to 20 with prime signature (1) to 2. In the process, we adjust m. This gives:
[1, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
We check the prime signature of m = 4 and see that its prime signature is (2). We increase c with 1 and set all numbers up to 20 with prime signature (2) to 3. This gives:
[1, 2, 2, 3, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
Similarily, after m = 6, we get
[1, 2, 2, 3, 2, 4, 2, 0, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 8 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 12 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 0, 2, 6, 2, 0], after m = 16 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 0], after m = 20 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 8]. Now, m > 20 so we stop. (End)
The above method is inefficient, because the step "set all elements a(n) up to n = Nmax with prime signature s(n) = S[c] to c" requires factoring all integers up to Nmax (or at least comparing their signature, once computed, with S[c]) again and again. It is much more efficient to run only once over each m = 1..Nmax, compute its prime signature s(m), add it to an ordered list in case it did not occur earlier, together with its "rank" (= new size of the list), and assign that rank to a(m). The list of prime signatures is much shorter than [1..Nmax]. One can also use m'(m) := the smallest n with the prime signature of m (which is faster to compute than to search for the signature) as representative for s(m), and set a(m) := a(m'(m)). Then it is sufficient to have just one counter (number of prime signatures seen so far) as auxiliary variable, in addition to the sequence to be computed. - M. F. Hasler, Jul 18 2019
MAPLE
A101296 := proc(n)
local a046523, a;
a046523 := A046523(n) ;
for a from 1 do
if A025487(a) = a046523 then
return a;
elif A025487(a) > a046523 then
return -1 ;
end if;
end do:
end proc: # R. J. Mathar, May 26 2017
MATHEMATICA
With[{nn = 120}, Function[s, Table[Position[Keys@s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], {n, nn}] ] (* Michael De Vlieger, May 12 2017, Version 10 *)
PROG
(PARI) find(ps, vps) = {for (k=1, #vps, if (vps[k] == ps, return(k)); ); }
lisps(nn) = {vps = []; for (n=1, nn, ps = vecsort(factor(n)[, 2]); ips = find(ps, vps); if (! ips, vps = concat(vps, ps); ips = #vps); print1(ips, ", "); ); } \\ Michel Marcus, Nov 15 2015; edited by M. F. Hasler, Jul 16 2019
(PARI)
rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences, invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences, invec[i], i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
write_to_bfile(1, rgs_transform(vector(100000, n, A046523(n))), "b101296.txt");
\\ Antti Karttunen, May 12 2017
CROSSREFS
Cf. A025487, A046523, A064839 (ordinal transform of this sequence), A181819, and arrays A095904, A179216.
Sequences that are unions of finite number (>= 2) of equivalence classes determined by the values that this sequence obtains (i.e., sequences mentioned in David A. Corneth's May 12 2017 formula): A001358 (A001248 U A006881, values 3 & 4), A007422 (values 1, 4, 5), A007964 (2, 3, 4, 5), A014612 (5, 6, 9), A030513 (4, 5), A037143 (1, 2, 3, 4), A037144 (1, 2, 3, 4, 5, 6, 9), A080258 (6, 7), A084116 (2, 4, 5), A167171 (2, 4), A217856 (6, 9).
Cf. also A077462, A305897 (stricter variants, with finer partitioning) and A254524, A286603, A286605, A286610, A286619, A286621, A286622, A286626, A286378 for other similarly constructed sequences.
KEYWORD
easy,nonn
AUTHOR
David Wasserman, Dec 21 2004
EXTENSIONS
Data section extended to 120 terms by Antti Karttunen, May 12 2017
Minor edits/corrections by M. F. Hasler, Jul 18 2019
STATUS
approved
Numbers with 12 divisors.
+10
15
60, 72, 84, 90, 96, 108, 126, 132, 140, 150, 156, 160, 198, 200, 204, 220, 224, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 352, 364, 372, 380, 392, 414, 416, 444, 460, 476, 486, 490, 492, 495, 500, 516, 522, 525, 532, 544, 550
OFFSET
1,1
COMMENTS
Numbers of the form p^11 A079395, p*q^5 A178740, p*q*r^2 A085987, or p^2*q^3 A143610, where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010, Mar 17 2010
LINKS
MATHEMATICA
Select[Range[600], Length[Divisors[ # ]] == 12 &] (* Stefan Steinerberger, Apr 10 2006 *)
Select[Range[600], DivisorSigma[0, #]==12&] (* Harvey P. Dale, Jun 01 2016 *)
PROG
(PARI) for(n=1, 1e3, if(numdiv(n)==12, print1(n, ", "))) \\ Altug Alkan, Nov 11 2015
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers with prime factorization p^2*q^4.
+10
10
144, 324, 400, 784, 1936, 2025, 2500, 2704, 3969, 4624, 5625, 5776, 8464, 9604, 9801, 13456, 13689, 15376, 21609, 21904, 23409, 26896, 29241, 29584, 30625, 35344, 42849, 44944, 55696, 58564, 59536, 60025, 68121, 71824, 75625, 77841
OFFSET
1,1
COMMENTS
Numbers k such that tau(k^2)/tau(k) = 3 where tau(n) is the number of divisors of n (A000005). - Michel Marcus, Feb 09 2018
FORMULA
Sum_{n>=1} 1/a(n) = P(2)*P(4) - P(6) = A085548 * A085964 - A085966 = 0.017749..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n)= A054753(n)^2. - R. J. Mathar, May 05 2023
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 4}; Select[Range[150000], f]
Module[{upto=80000}, Select[Union[Flatten[{#[[1]]^2 #[[2]]^4, #[[1]]^4 #[[2]]^2}&/@ Subsets[Prime[Range[Sqrt[upto/16]]], {2}]]], #<=upto&]] (* Harvey P. Dale, Dec 15 2017 *)
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\4)^(1/4), t=p^4; forprime(q=2, sqrt(lim\t), if(p==q, next); listput(v, t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
The number of factorizations n = Product_i b_i^e_i, where all bases b_i are distinct, and all exponents e_i are distinct >=1.
+10
9
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3
OFFSET
1,4
COMMENTS
Not multiplicative: a(48) = a(2^4*3) = 5 <> a(2^4)*a(3) = 4*1 = 4. - R. J. Mathar, Nov 05 2016
FORMULA
a(n)=1 for all n in A005117. a(n)=2 for all n in A001248 and for all n in A054753 and for all n in A085987 and for all n in A030078. a(n)=3 for all n in A065036. a(n)=4 for all n in A085986 and for all n in A030514. a(n)=5 for all n in A178739, all n in A179644 and for all n in A050997. a(n)=6 for all n in A143610, all n in A162142 and all n in A178740. a(n)=7 for all n in A030516. a(n)=9 for all n in A189988 and all n in A189987. a(n)=10 for all n in A092759. a(n) = 11 for all n in A179664. a(n)=12 for all n in A179646. - R. J. Mathar, Nov 05 2016, May 20 2017
EXAMPLE
From R. J. Mathar, Nov 05 2016: (Start)
a(4)=2: 4^1 = 2^2.
a(8)=2: 8^1 = 2^3.
a(9)=2: 9^1 = 3^2.
a(12)=2: 12^1 = 2^2*3^1.
a(16)=4: 16^1 = 4^2 = 2^2*4^1 = 2^4.
a(18)=2: 18^1 = 2*3^2.
a(20)=2: 20^1 = 2^2*5^1.
a(24)=3: 24^1 = 2^2*6^1 = 2^3*3^1.
a(32)=5: 32^1 = 2^1*4^2 = 2^2*8^1 = 2^3*4^1 = 2^5.
a(36)=4: 36^1 = 6^2 = 3^2*4^1 = 2^2*9^1.
a(48)=5: 48^1 = 3^1*4^2 = 2^2*12^1 = 2^3*6^1 = 2^4*3^1.
a(60)=2 : 60^1 = 2^2*15^1.
a(64)=7: 64^1 = 8^2 = 4^3 = 2^2*16^1 = 2^3*8^1 = 2^4*4^1 = 2^6.
a(72)=6 : 72^1 = 3^2*8^1 = 2^1*6^2 = 2^2*18^1 = 2^3*9^1 = 2^3*3^2.
(End)
MAPLE
# Count solutions for products if n = dvs_i^exps(i) where i=1..pividx are fixed
Apiv := proc(n, dvs, exps, pividx)
local dvscnt, expscopy, i, a, expsrt, e ;
dvscnt := nops(dvs) ;
a := 0 ;
if pividx > dvscnt then
# have exhausted the exponent list: leave of the recursion
# check that dvs_i^exps(i) is a representation
if n = mul( op(i, dvs)^op(i, exps), i=1..dvscnt) then
# construct list of non-0 exponents
expsrt := [];
for i from 1 to dvscnt do
if op(i, exps) > 0 then
expsrt := [op(expsrt), op(i, exps)] ;
end if;
end do;
# check that list is duplicate-free
if nops(expsrt) = nops( convert(expsrt, set)) then
return 1;
else
return 0;
end if;
else
return 0 ;
end if;
end if;
# need a local copy of the list to modify it
expscopy := [] ;
for i from 1 to nops(exps) do
expscopy := [op(expscopy), op(i, exps)] ;
end do:
# loop over all exponents assigned to the next base in the list.
for e from 0 do
candf := op(pividx, dvs)^e ;
if modp(n, candf) <> 0 then
break;
end if;
# assign e to the local copy of exponents
expscopy := subsop(pividx=e, expscopy) ;
a := a+procname(n, dvs, expscopy, pividx+1) ;
end do:
return a;
end proc:
A255231 := proc(n)
local dvs, dvscnt, exps ;
if n = 1 then
return 1;
end if;
# candidates for the bases are all divisors except 1
dvs := convert(numtheory[divisors](n) minus {1}, list) ;
dvscnt := nops(dvs) ;
# list of exponents starts at all-0 and is
# increased recursively
exps := [seq(0, e=1..dvscnt)] ;
# take any subset of dvs for the bases, i.e. exponents 0 upwards
Apiv(n, dvs, exps, 1) ;
end proc:
seq(A255231(n), n=1..120) ; # R. J. Mathar, Nov 05 2016
CROSSREFS
Cf. A000688 (b_i not necessarily distinct).
KEYWORD
nonn
AUTHOR
Saverio Picozzi, Feb 18 2015
EXTENSIONS
Values corrected. Incorrect comments removed. - R. J. Mathar, Nov 05 2016
STATUS
approved
Numbers of ordered pairs of divisors d < e of n such that gcd(d, e) > 1.
+10
5
0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 6, 0, 8, 0, 8, 2, 2, 0, 18, 1, 2, 3, 8, 0, 15, 0, 10, 2, 2, 2, 24, 0, 2, 2, 18, 0, 15, 0, 8, 8, 2, 0, 32, 1, 8, 2, 8, 0, 18, 2, 18, 2, 2, 0, 44, 0, 2, 8, 15, 2, 15, 0, 8, 2, 15, 0, 49, 0, 2, 8, 8, 2, 15, 0, 32, 6, 2
OFFSET
1,6
COMMENTS
Number of elements in the set {(x, y): x|n, y|n, x < y, gcd(x, y) > 1}.
Every element of the sequence is repeated indefinitely, for instance:
a(n)=0 if n prime;
a(n)=1 if n = p^2 for p prime (A001248);
a(n)=2 if n is a squarefree semiprime (A006881);
a(n)=3 if n = p^3 for p prime (A030078);
a(n)=6 if n = p^4 for p prime (A030514);
a(n)=8 if n is a number which is the product of a prime and the square of a different prime (A054753);
a(n)=10 if n = p^5 for p prime (A050997);
a(n)=15 if n is in the set {A007304} union {64} = {30, 42, 64, 66, 70,...} = {Sphenic numbers} union {64};
a(n)=18 if n is the product of the cube of a prime (A030078) and a different prime (see A065036);
a(n)=21 if n = p^7 for p prime (A092759);
a(n)=24 if n is square of a squarefree semiprime (A085986);
a(n)=32 if n is the product of the 4th power of a prime (A030514) and a different prime (see A178739);
a(n)=36 if n = p^9 for p prime (A179665);
a(n)=44 if n is the product of exactly four primes, three of which are distinct (A085987);
a(n)=45 if n is a number with 11 divisors (A030629);
a(n)=49 if n is of the form p^2*q^3, where p,q are distinct primes (A143610);
a(n)=50 if n is the product of the 5th power of a prime (A050997) and a different prime (see A178740);
a(n)=55 if n if n = p^11 for p prime(A079395);
a(n)=72 if n is a number with 14 divisors (A030632);
a(n)=80 if n is the product of four distinct primes (A046386);
a(n)=83 if n is a number with 15 divisors (A030633);
a(n)=89 if n is a number with prime factorization pqr^3 (A189975);
a(n)=96 if n is a number that are the cube of a product of two distinct primes (A162142);
a(n)=98 if n is the product of the 7th power of a prime and a distinct prime (p^7*q) (A179664);
a(n)=116 if n is the product of exactly 2 distinct squares of primes and a different prime (p^2*q^2*r) (A179643);
a(n)=126 if n is the product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2) (A179646);
a(n)=128 if n is the product of the 8th power of a prime and a distinct prime (p^8*q) (A179668);
a(n)=150 if n is the product of the 4th power of a prime and 2 different distinct primes (p^4*q*r) (A179644);
a(n)=159 if n is the product of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3) (A179666).
It is possible to continue with a(n) = 162, 178, 209, 224, 227, 238, 239, 260, 289, 309, 320, 333,...
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A066446(n) - A063647(n).
a(n) = Sum_{d1|n, d2|n, d1<d2} (1-[gcd(d1,d2) = 1]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 01 2021
EXAMPLE
a(12) = 8 because the divisors of 12 are {1, 2, 3, 4, 6, 12} and GCD(d_i, d_j)>1 for the 8 following pairs of divisors: (2,4), (2,6), (2,12), (3,6), (3,12), (4,6), (4,12) and (6,12).
MAPLE
with(numtheory):nn:=100:
for n from 1 to nn do:
x:=divisors(n):n0:=nops(x):it:=0:
for i from 1 to n0 do:
for j from i+1 to n0 do:
if gcd(x[i], x[j])>1
then
it:=it+1:
else
fi:
od:
od:
printf(`%d, `, it):
od:
MATHEMATICA
Table[Sum[Sum[(1 - KroneckerDelta[GCD[i, k], 1]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Jan 01 2021 *)
PROG
(PARI) a(n)=my(d=divisors(n)); sum(i=2, #d, sum(j=1, i-1, gcd(d[i], d[j])>1)) \\ Charles R Greathouse IV, Aug 03 2016
(PARI) a(n)=my(f=factor(n)[, 2], t=prod(i=1, #f, f[i]+1)); t*(t-1)/2 - (prod(i=1, #f, 2*f[i]+1)+1)/2 \\ Charles R Greathouse IV, Aug 03 2016
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 03 2016
STATUS
approved
Numbers n such that n and n + 1 are both of the form p*q^5 where p and q are distinct primes.
+10
2
8991, 9375, 335583, 364256, 488672, 535328, 677727, 690848, 755487, 768608, 864351, 908576, 924128, 955232, 1097631, 1377567, 1424223, 1608416, 1688607, 1875231, 2121632, 2124063, 2168288, 2277152, 2541536, 2575071, 2621727, 2901663, 3190624, 3241376, 3409375
OFFSET
1,1
COMMENTS
The smaller of adjacent values in A178740. - R. J. Mathar, Aug 08 2012
EXAMPLE
8991 is a member as 8991 = 37*3^5 and 8992 = 281*2^5.
MAPLE
with(numtheory):for n from 3 to 10^7 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^5 : xx2:=x[2]*x[1]^5:yy1:=y[1]*y[2]^5: yy2:=y[2]*y[1]^5:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
MATHEMATICA
lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 5}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 5}, AppendTo[lst, n]]], {n, 3, 10^7}]; lst
SequencePosition[Table[If[Sort[FactorInteger[n][[;; , 2]]]=={1, 5}, 1, 0], {n, 341*10^4}], {1, 1}][[;; , 1]] (* Harvey P. Dale, Nov 04 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 05 2012
STATUS
approved
Characteristic polynomials of a square matrix based on A051731 where A051731(1,N)=1 and A051731(N,N)=0 and where N=size of matrix, analogous to the Redheffer matrix.
+10
2
1, 1, -1, -1, -1, 1, -1, 0, 2, -1, 0, 0, 2, -3, 1, -1, 2, 1, -5, 4, -1, 1, -3, 5, -8, 9, -5, 1, -1, 4, -4, -5, 15, -14, 6, -1, 0, -1, 6, -17, 29, -31, 20, -7, 1, 0, 0, 2, -13, 36, -55, 50, -27, 8, -1, 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1
OFFSET
0,9
COMMENTS
From Mats Granvik, Sep 30 2017: (Start)
Conjecture: The largest absolute value of the eigenvalues of these characteristic polynomials appear to have the same prime signature in the factorization of the matrix sizes N.
In other words: Let b(N) equal the sequence of the largest absolute values of the eigenvalues of the characteristic polynomials of the matrices of size N. b(N) is then a sequence of truncated eigenvalues starting:
b(N=1..infinity)
= 1.00000, 1.61803, 1.61803, 2.00000, 1.61803, 2.20557, 1.61803, 2.32472, 2.00000, 2.20557, 1.61803, 2.67170, 1.61803, 2.20557, 2.20557, 2.61803, 1.61803, 2.67170, 1.61803, 2.67170, 2.20557, 2.20557, 1.61803, 3.08032, 2.00000, 2.20557, 2.32472, 2.67170, 1.61803, 2.93796, 1.61803, 2.89055, 2.20557, 2.20557, 2.20557, 3.21878, 1.61803, 2.20557, 2.20557, 3.08032, 1.61803, 2.93796, 1.61803, 2.67170, 2.67170, 2.20557, 1.61803, 3.45341, 2.00000, 2.67170, 2.20557, 2.67170, 1.61803, 3.08032, 2.20557, 3.08032, 2.20557, 2.20557, 1.61803, 3.53392, 1.61803, 2.20557, 2.67170, ...
It then appears that for n = 1,2,3,4,5,...,infinity we have the table:
Prime signature: b(Axxxxxx(n)) = Largest abs(eigenvalue):
p^0 : b(1) = 1.0000000000000000000000000000...
p : b(A000040(n)) = 1.6180339887498949025257388711...
p^2 : b(A001248(n)) = 2.0000000000000000000000000000...
p*q : b(A006881(n)) = 2.2055694304005917238953315973...
p^3 : b(A030078(n)) = 2.3247179572447480566665944934...
p^2*q : b(A054753(n)) = 2.6716998816571604358216518448...
p^4 : b(A030514(n)) = 2.6180339887498917939012699207...
p^3*q : b(A065036(n)) = 3.0803227214906021558249449299...
p*q*r : b(A007304(n)) = 2.9379558827528557962693867011...
p^5 : b(A050997(n)) = 2.8905508875432590620846440288...
p^2*q^2 : b(A085986(n)) = 3.2187765853016649941764626419...
p^4*q : b(A178739(n)) = 3.4534111136673804054453285061...
p^2*q*r : b(A085987(n)) = 3.5339198574905377192578725953...
p^6 : b(A030516(n)) = 3.1478990357047909043330946587...
p^3*q^2 : b(A143610(n)) = 3.7022736187975437971431347250...
p^5*q : b(A178740(n)) = 3.8016448153137023524550386355...
p^3*q*r : b(A189975(n)) = 4.0600260453688532535920785448...
p^7 : b(A092759(n)) = 3.3935083220984414431597997463...
p^4*q^2 : b(A189988(n)) = 4.1453038440113498808159420150...
p^2*q^2*r: b(A179643(n)) = 4.2413382309993874486053755390...
p^6*q : b(A189987(n)) = 4.1311805192254587026923218218...
p*q*r*s : b(A046386(n)) = 3.8825338629275134572083061357...
...
b(Axxxxxx(1)) in the sequences above, is given by A025487.
(End)
First column in the coefficients of the characteristic polynomials is the Möbius function A008683.
Row sums of coefficients start: 0, -1, 0, 0, 0, 0, 0, 0, 0, ...
Third diagonal is a signed version of A000096.
Most of the eigenvalues are equal to 1. The number of eigenvalues equal to 1 are given by A075795 for n>1.
The first three of the eigenvalues above can be calculated as nested radicals. The fourth eigenvalue 2.205569430400590... minus 1 = 1.205569430400590... is also a nested radical.
EXAMPLE
{
{ 1},
{ 1, -1},
{-1, -1, 1},
{-1, 0, 2, -1},
{ 0, 0, 2, -3, 1},
{-1, 2, 1, -5, 4, -1},
{ 1, -3, 5, -8, 9, -5, 1},
{-1, 4, -4, -5, 15, -14, 6, -1},
{ 0, -1, 6, -17, 29, -31, 20, -7, 1},
{ 0, 0, 2, -13, 36, -55, 50, -27, 8, -1},
{ 1, -7, 23, -50, 84, -112, 112, -78, 35, -9, 1}
}
MATHEMATICA
Clear[x, AA, nn, s]; Monitor[AA = Flatten[Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; MatrixForm[A]; a = A[[1, nn]]; A[[1, nn]] = A[[nn, nn]]; A[[nn, nn]] = a; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]], nn]
KEYWORD
sign,tabl
AUTHOR
Mats Granvik, Jul 24 2016
STATUS
approved
Numbers whose prime factorization has a second-largest exponent that equals 1.
+10
2
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 204
OFFSET
1,1
COMMENTS
First differs from A332785 at n = 112: A332785(112) = 360 = 2^3 * 3^2 * 5 is not a term of this sequence.
First differs from A317616 at n = 38: A317616(38) = 144 = 2*4 * 3^2 is not a term of this sequence.
Numbers k such that A375933(k) = 1.
Numbers of the form s1 * s2^e, where s1 and s2 are coprime squarefree numbers that are both larger than 1, and e >= 2.
The asymptotic density of this sequence is Sum_{e>=2} d(e) = 0.36113984820338109927..., where d(e) = Product_{p prime} (1 - 1/p^2 + 1/p^e - 1/p^(e+1)) - Product_{p prime} (1 - 1/p^(e+1)) is the asymptotic density of terms k with A051903(k) = e >= 2.
LINKS
FORMULA
A051904(a(n)) = 1.
A051903(a(n)) >= 2.
A001221(a(n)) = 2.
MATHEMATICA
q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[0, Max[Select[e, # < Max[e] &]]] == 1]; Select[Range[300], q]
PROG
(PARI) is(n) = if(n == 1, 0, my(e = factor(n)[, 2]); e = select(x -> x < vecmax(e), e); if(#e == 0, 0, vecmax(e) == 1));
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 03 2024
STATUS
approved
Numbers with prime factorization pqrst^2.
+10
1
4620, 5460, 6930, 7140, 7980, 8190, 8580, 9660, 10710, 11220, 11550, 11970, 12012, 12180, 12540, 12870, 13020, 13260, 13650, 14490, 14820, 15180, 15540, 15708, 16170, 16830, 17220, 17556, 17850, 17940, 18018, 18060, 18270, 18564, 18810, 19110, 19140, 19380
OFFSET
1,1
LINKS
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 1, 1, 2}; Select[Range[30000], f]
PROG
(PARI) list(lim)=my(v=List(), t1, t2, t3, t4); forprime(p=2, sqrtint(lim\210), t1=p^2; forprime(q=2, lim\(30*t1), if(q==p, next); t2=q*t1; forprime(r=2, lim\(6*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2, lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2, lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers with at least one 5 in their prime signature.
+10
1
32, 96, 160, 224, 243, 288, 352, 416, 480, 486, 544, 608, 672, 736, 800, 864, 928, 972, 992, 1056, 1120, 1184, 1215, 1248, 1312, 1376, 1440, 1504, 1568, 1632, 1696, 1701, 1760, 1824, 1888, 1944, 1952, 2016, 2080, 2144, 2208, 2272, 2336, 2400, 2430, 2464, 2528, 2592, 2656, 2673, 2720, 2784, 2848, 2912, 2976
OFFSET
1,1
COMMENTS
Contains all odd multiples of 2^5: Each second term of A174312 is in this sequence.
The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/p^5 + 1/p^6) = 0.01863624892... . - Amiram Eldar, May 05 2023
LINKS
EXAMPLE
Contains 2^5, 2^5*3, 2^5*5, 2^5*7, 3^5, 2^5*3^2, 2^5*11, 2^5*13, 2^5*3*5, 2*3^5, etc.
MATHEMATICA
Select[Range[3000], MemberQ[FactorInteger[#][[;; , 2]], 5] &] (* Amiram Eldar, May 05 2023 *)
CROSSREFS
Cf. A038109 (at least one 2), A176297 (at least one 3), A050997 (subsequence), A178740 (subsequence), A179646 (subsequence), A179667 (subsequence), A179671 (subsequence), A174312.
KEYWORD
nonn
AUTHOR
R. J. Mathar, May 05 2023
STATUS
approved

Search completed in 0.028 seconds