A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
例えば高校生の時に習う理想気体の状態方程式でPv=RTつまり
P=RT/v
というのがありますが、それを実在の気体にも適用できるように、α、a、bを物質によって定まる定数として
P=RT/(v-b)-αa/(v(v+b))
と補正します。SRK式と言います。式を変形すると
v(v+b)(v-b)P-v(v+b)RT+(v-b)αa=0
(v^3-b^2v)P-(v^2+bv)RT+(v-b)αa=0
vについて整理する。
Pv^3-RTv^2+(αa-RTb-b^2*P)v-αab=0
P^2/(RT)^3をかける。
(Pv/RT)^3-(Pv/RT)^2+(αaP/(RT)^2-bP/(RT)-(bP/RT)^2)(Pv/RT)-(αaP/(RT)^2)(bP/RT)=0
ここで
z=Pv/RT
A=αaP/(RT)^2
B=bP/RT
とすれば
z^3-z^2+(A-B-B^2)z-AB=0
となります。
つまりz=Pv/RTは理想気体とのずれを表し圧縮係数といいますが、zの3次方程式が現れます。
No.2
- 回答日時:
3次以上の方程式を使用するとかそれを解くとかいう実例はあまり思いつかないのですが、3次以上の多項式は一例を挙げれば誤り訂正符号化というような分野を勉強すると使用します。
誤り訂正符号化は身近な例ですとQRコードやCDのデータ表現に使用されています。
QRコードの場合はQRコートにボールペンで少し位いたずら書きをしてもちゃんと読めます。
それは誤って読んだ部分を正しく訂正してしまう能力があるからです。
CDの場合は、CDの表面にカッターのようなもので少し位傷を付けてしまっても雑音を発生することなく再生できます。これも同じく誤って読んだ部分を正しく訂正してしまう能力があるからです。
誤り訂正符号化を勉強するには代数学の中の有限体という分野を知る必要があります。
No.1
- 回答日時:
例えば、
水晶発振器(PCや携帯電話、他各種電子機器のクロック信号をつくるもの)に使われている水晶振動子は、その発信周波数(クロック周波数)が温度に対し3次関数的に変化します(正確にはもう少し高次だが、3次で近似しています)。
これを元に発信周波数を温度補償したりします(腕時計なんかだと温度補償しません)。携帯電話の基地局など、高精度の周波数を利用するものでは温度補償されています。
とりあえず思いつくのはこんなとこ
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 2次方程式の「(x-3)^2=4」を解くとき、 そのまま解くことも可能ですが A=x-3と置いて、A 3 2023/01/27 18:20
- 日本語 より大きな 5 2022/09/29 08:00
- 物理学 量子力学 三次元調和振動子 シュレディンガー方程式 1 2022/08/05 20:45
- 数学 √の中がマイナスになった時、iを使って--- 6 2022/05/28 09:10
- 物理学 ファンデルワールス状態方程式の臨界時の状態量を求める際、臨界体積VrはVの3次関数の極値でもあり変曲 1 2023/03/25 17:51
- 数学 3次方程式の解で実部が正のものが存在する条件の調べ方 0 2023/03/23 15:07
- 数学 【 数I 2次方程式 重解 】 問題 2次方程式x²-mx+9=0が重解をもつよう に、定数mの値を 1 2022/07/17 19:43
- C言語・C++・C# 逆ポーランド法の計算について 3 2023/05/27 00:53
- 数学 数学微分方程式の問題です。次に書く問題を教えて欲しいです。質量mの物体が自然長l、ばね定数kのバネで 1 2022/04/29 21:23
- 宇宙科学・天文学・天気 AIが答えた方程式 1 2023/02/20 00:12
このQ&Aを見た人はこんなQ&Aも見ています
-
カンパ〜イ!←最初の1杯目、なに頼む?
飲み会で最初に頼む1杯、自由に頼むとしたら何を頼みますか? 最初はビールという縛りは無しにして、好きなものを飲むとしたら何を飲みたいですか。
-
一回も披露したことのない豆知識
あなたの「一回も披露したことのない豆知識」を教えてください。 「そうなんだね」と「確かに披露する場所ないね」で評価します。
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
いけず言葉しりとり
はんなりと心にダメージを与える「いけず言葉」でしりとりをしましょう。 「あ」あら〜しゃれた服着てはりますな 遠くからでもわかりましたわ
-
【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
【お題】 ・このサンタクロースは偽物だと気付いた理由とは?
-
3乗に比例する現象は3次関数で表現されるのですか? 3次関数って変です
物理学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
2x3行列の逆行列の公式
-
平方完成で極値を求める
-
未知数の数と必要な方程式の数...
-
2次関数と2次方程式の違い
-
z^3=1を満たす複素数を答えよ、...
-
何年生で習う範囲ですか?
-
円の方程式?円の関数じゃないの?
-
3次、4次方程式は、具体的に何...
-
一次関数と一次方程式、二次方...
-
遊んでいそうな顔=イケメンモ...
-
実数係数4次方程式の判別式
-
3次方程式の逆関数の求め方
-
数学
-
「生まれた年月日の数字で(あ...
-
数学の3大分野、代数・幾何・解析
-
なぜ未知数の数だけ方程式が必...
-
tが満たすべき2次方程式を求め...
-
aを実数の定数とする。xの方程...
-
グラフの平行移動について
-
解析力学で困ってます
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「生まれた年月日の数字で(あ...
-
2次関数 y=ax2+bx+cのxを求め...
-
エクセルでxを求めたいのですが!
-
円の方程式?円の関数じゃないの?
-
未知数の数と必要な方程式の数...
-
連立方程式の解が交点の座標と...
-
高2数学の質問です。 円の方程...
-
2x3行列の逆行列の公式
-
遊んでいそうな顔=イケメンモ...
-
2次関数と2次方程式の違い
-
3次、4次方程式は、具体的に何...
-
数学の3大分野、代数・幾何・解析
-
何年生で習う範囲ですか?
-
3次方程式の逆関数の求め方
-
方程式って何次まで解けますか?
-
xの5乗=1 の答えを教えてく...
-
z^3=1を満たす複素数を答えよ、...
-
円柱と円の方程式
-
aを定数とするとき、次の方程式...
-
パッと調べてみたところ無かっ...
おすすめ情報