Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Hermann Steller

    Here we describe a protein product of the human septin H5/PNUTL2/CDCrel2b gene, which we call ARTS (for apoptosis-related protein in the TGF-beta signalling pathway). ARTS is expressed in many cells and acts to enhance cell death induced... more
    Here we describe a protein product of the human septin H5/PNUTL2/CDCrel2b gene, which we call ARTS (for apoptosis-related protein in the TGF-beta signalling pathway). ARTS is expressed in many cells and acts to enhance cell death induced by TGF-beta or, to a lesser extent, by other apoptotic agents. Unlike related septin gene products, ARTS is localized to mitochondria and translocates to the nucleus when apoptosis occurs. Mutation of the P-loop of ARTS abrogates its competence to activate caspase 3 and to induce apoptosis. Taken together, these observations expand the functional attributes of septins previously described as having roles in cytokinesis and cellular morphogenesis.
    Self- and hetero-association of the pro-apoptotic proteins Reaper, Hid, and Grim is required for efficient induction of the cell death program.
    Proteasome-mediated degradation of intracellular proteins is essential for cell function and survival. The proteasome-binding protein PI31 (Proteasomal Inhibitor of 31kD) promotes 26S assembly and functions as an adapter for proteasome... more
    Proteasome-mediated degradation of intracellular proteins is essential for cell function and survival. The proteasome-binding protein PI31 (Proteasomal Inhibitor of 31kD) promotes 26S assembly and functions as an adapter for proteasome transport in axons. As localized protein synthesis and degradation is especially critical in neurons, we generated a conditional loss of PI31 in spinal motor neurons (MNs) and cerebellar Purkinje cells (PCs). A cKO of PI31 in these neurons caused axon degeneration, neuronal loss and progressive spinal and cerebellar neurological dysfunction. For both MNs and PCs, markers of proteotoxic stress preceded axonal degeneration and motor dysfunction, indicating a critical role for PI31 in neuronal homeostasis. The time course of the loss of MN and PC function in developing mouse CNS suggests a key role for PI31 in human developmental neurological disorders.
    Age-related neurodegenerative diseases pose a major unmet health need since no effective treatment strategies are currently available. These disorders are defined by the accumulation of abnormal protein aggregates that impair synaptic... more
    Age-related neurodegenerative diseases pose a major unmet health need since no effective treatment strategies are currently available. These disorders are defined by the accumulation of abnormal protein aggregates that impair synaptic function and cause progressive neuronal degeneration. Therefore, stimulating protein clearance mechanisms may be neuro-protective. The proteasome regulator PI31 promotes local protein degradation at synapses by mediating fast proteasome transport in neurites, and loss of PI31 function causes neuronal degeneration. Here we show that transgenic expression of PI31 in a mouse Parkinson’s Disease model preserves neuronal function and greatly extends animal health and lifespan. These results indicate that targeting the PI31-pathway may have therapeutic value for treating neurodegenerative disorders.
    Protein degradation by the ubiquitin-proteasome system (UPS) is critical for neuronal development, plasticity and function. Neurons utilize microtubule-dependent molecular motors to allocate proteasomes to synapses, but how proteasomes... more
    Protein degradation by the ubiquitin-proteasome system (UPS) is critical for neuronal development, plasticity and function. Neurons utilize microtubule-dependent molecular motors to allocate proteasomes to synapses, but how proteasomes are coupled to motor proteins and how this transport is regulated to meet changing demand for protein breakdown remains largely unknown. We show that the conserved proteasome-binding protein PI31 serves as an adaptor to directly couple proteasomes with dynein light chain proteins (DYNLL1/2). Inactivation of PI31 inhibits proteasome motility in axons and disrupts synaptic protein homeostasis, structure and function. Moreover, phosphorylation of PI31 at a conserved site by p38 MAP kinase promotes binding to DYNLL1/2, and a non-phosphorable PI31 mutant impairs proteasome movement in axons, suggesting a mechanism to regulate loading of proteasomes onto motor proteins. Because mutations affecting PI31 activity are associated with human neurodegenerative di...
    The self-renewal of intestinal stem cell is controlled by Wingless/Wnt-β catenin signaling both in Drosophila and mammals. Since Axin is a rate-limiting factor in Wingless signaling its regulation is essential. Iduna is an evolutionarily... more
    The self-renewal of intestinal stem cell is controlled by Wingless/Wnt-β catenin signaling both in Drosophila and mammals. Since Axin is a rate-limiting factor in Wingless signaling its regulation is essential. Iduna is an evolutionarily conserved ubiquitin E3 ligase that has been identified as a critical regulator for degradation of ADP-ribosylated Axin and thus of Wnt/β-catenin signaling. However, its physiological significance remains to be demonstrated. Here, we generated loss-of-function mutants of Iduna to investigate its physiological role in Drosophila. Genetic depletion of Iduna causes the accumulation of both Tankyrase and Axin. Increase of Axin protein in enterocytes non-autonomously enhanced stem cell divisions in the Drosophila midgut. Enterocytes secreted Unpaired and thereby stimulated the activity of the JAK-STAT pathway in intestinal stem cells. A decrease in Axin gene expression suppressed both the over-proliferation of stem cells and restored their numbers to norm...
    This article cites 35 articles, 21 of which can be accessed free
    Non-coding RNA biogenesis in higher eukaryotes has not been fully characterized. Here, we studied the Drosophila melanogaster Rexo5 (CG8368) protein, a metazoan-specific member of the DEDDh 3'-5' single-stranded RNA exonucleases,... more
    Non-coding RNA biogenesis in higher eukaryotes has not been fully characterized. Here, we studied the Drosophila melanogaster Rexo5 (CG8368) protein, a metazoan-specific member of the DEDDh 3'-5' single-stranded RNA exonucleases, by genetic, biochemical, and RNA-sequencing approaches. Rexo5 is required for small nucleolar RNA (snoRNA) and rRNA biogenesis and is essential in D. melanogaster. Loss-of-function mutants accumulate improperly 3' end-trimmed 28S rRNA, 5S rRNA, and snoRNA precursors in vivo. Rexo5 is ubiquitously expressed at low levels in somatic metazoan cells but extremely elevated in male and female germ cells. Loss of Rexo5 leads to increased nucleolar size, genomic instability, defective ribosome subunit export, and larval death. Loss of germline expression compromises gonadal growth and meiotic entry during germline development.
    Gaucher disease (GD) results from mutations in the acid β-glucocerebrosidase (GCase) encoding gene, GBA, which leads to accumulation of glucosylceramides. GD patients and carriers of GD mutations have a significantly higher propensity to... more
    Gaucher disease (GD) results from mutations in the acid β-glucocerebrosidase (GCase) encoding gene, GBA, which leads to accumulation of glucosylceramides. GD patients and carriers of GD mutations have a significantly higher propensity to develop Parkinson disease (PD) in comparison to the non-GD population.In the present study we used the fruit fly Drosophila melanogaster to show that development of PD in carriers of GD mutations results from the presence of mutant GBA alleles. Drosophila has two GBA orthologs (CG31148 and CG31414), each of which has a minos insertion, which creates C-terminal deletion in the encoded GCase. Flies double heterozygous for the endogenous mutant GBA orthologs presented Unfolded Protein Response (UPR) and developed parkinsonian signs, manifested by death of dopaminergic cells, defective locomotion and a shorter life span. We also established transgenic flies carrying the mutant human N370S, L444P and the 84GG variants. UPR activation and development of p...
    PLoS Biology is an open-access, peer-reviewed journal that features works of exceptional significance in all areas of biological science, from molecules to ecosystems, including works at the interface with other disciplines.
    Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for... more
    Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their ...
    The blood–brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions... more
    The blood–brain barrier (BBB) of Drosophila comprises a thin epithelial layer of subperineural glia (SPG), which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions (SJs). Previously, we identified a novel Gi/Go protein-coupled receptor (GPCR), Moody, as a key factor in BBB formation at the embryonic stage. However, the molecular and cellular mechanisms of Moody signaling in BBB formation and maturation remain unclear. Here, we identify cAMP-dependent protein kinase A (PKA) as a crucial antagonistic Moody effector that is required for the formation, as well as for the continued SPG growth and BBB maintenance in the larva and adult stage. We show that PKA is enriched at the basal side of the SPG cell and that this polarized activity of the Moody/PKA pathway finely tunes the enormous cell growth and BBB integrity. Moody/PKA signaling precisely regulates the actomyosin contractility, vesicle trafficking, and the proper...
    Protein degradation by the ubiquitin-proteasome system (UPS) is central to protein homeostasis and cell survival. The active 26S proteasome is a large protease complex consisting of a catalytic 20S subunit and 19S regulatory particles.... more
    Protein degradation by the ubiquitin-proteasome system (UPS) is central to protein homeostasis and cell survival. The active 26S proteasome is a large protease complex consisting of a catalytic 20S subunit and 19S regulatory particles. Cancer cells are exposed to considerable protein overload due to high metabolic rates, reprogrammed energy metabolism and aneuploidy. Here we report a mechanism that facilitates the assembly of active 26S proteasomes in malignant cells. Upon tumorigenic transformation of the gut epithelium, 26S proteasome assembly was significantly enhanced, but levels of individual subunits were not changed. This enhanced assembly of 26S proteasomes increased further with tumor progression and was observed specifically in transformed cells, but not in other rapidly dividing cells. Moreover, expression of PSMD5, an inhibitor of proteasome assembly, was reduced in intestinal tumors and silenced with tumor progression. Re-expression of PSMD5 in tumor cells caused decrea...
    Background: Apoptosis is a morphologically distinct, genetically programmed form of cell death that is evolutionarily highly conserved amongst multi-cellular eukaryotes. Correct regulation of apoptosis is critical for normal development... more
    Background: Apoptosis is a morphologically distinct, genetically programmed form of cell death that is evolutionarily highly conserved amongst multi-cellular eukaryotes. Correct regulation of apoptosis is critical for normal development and the prevention of diseases, such as cancer. Genetic analysis of invertebrate model organisms has proven invaluable for the identification and study of key molecules involved in apoptosis. In Drosophila, the proteins Reaper (Rpr), Head involution defective (Hid) and Grim induce cell death in a caspase dependent manner by inhibiting the anti-apoptotic function of diap1. Methods: To further elucidate the molecular mechanisms underlying the control of apoptosis, we conducted a dominant modifier screen for genes that could suppress the strong eye ablation phenotype caused by expressing hid under the control of an eye-specific promoter. Results: As previously reported, we identified several loss of function mutants in components of the EGFR/Ras/MAPK pa...
    Research Interests:
    Adenylyl cyclases (ACs) generate cAMP, a second messenger of utmost importance that regulates a vast array of biological processes in all kingdoms of life. However, almost nothing is known about how AC activity is regulated through... more
    Adenylyl cyclases (ACs) generate cAMP, a second messenger of utmost importance that regulates a vast array of biological processes in all kingdoms of life. However, almost nothing is known about how AC activity is regulated through protein degradation mediated by ubiquitination or other mechanisms. Here, we show that transcriptional regulator interacting with the PHD-bromodomain 1 (TRIP-Br1, Sertad1), a newly identified protein with poorly characterized functions, acts as an adaptor that bridges the interaction of multiple AC isoforms with X-linked inhibitor of apoptosis protein (XIAP), a RING-domain E3 ubiquitin ligase. XIAP ubiquitinates a highly conserved Lys residue in AC isoforms and thereby accelerates the endocytosis and degradation of multiple AC isoforms in human cell lines and mice. XIAP/TRIP-Br1-mediated degradation of ACs forms part of a negative-feedback loop that controls the homeostasis of cAMP signaling in mice. Our findings reveal a previously unrecognized mechanism...
    Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders.... more
    Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders. Apoptosis occurs through the activation of a cell-intrinsic suicide program. The basic machinery to carry out apoptosis appears to be present in essentially all mammalian cells at all times, but the activation of the suicide program is regulated by many different signals that originate from both the intracellular and the extracellular milieu. Genetic studies in the nematode Caenorhabditis elegans and in the fruit fly Drosophila melanogaster have led to the isolation of genes that are specifically required for the induction of programmed cell death. At least some components of the apoptotic program have been conserved among worms, insects, and vertebrates.
    ABSTRACT
    Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders.... more
    Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders. Apoptosis occurs through the activation of a cell-intrinsic suicide program. The basic machinery to carry out apoptosis appears to be present in essentially all mammalian cells at all times, but
    Key components of the programmed cell death pathway are conserved between Caenorhabditis elegans, Drosophila melanogaster and humans. The search for additional homologs has been facilitated by the availability of the entire genomic... more
    Key components of the programmed cell death pathway are conserved between Caenorhabditis elegans, Drosophila melanogaster and humans. The search for additional homologs has been facilitated by the availability of the entire genomic sequence for each of these organisms.
    The recent discovery of a Drosophila orthologue of the p53 tumour suppressor promises new insights into the complex function, regulation and evolution of one of the most intensely studied human disease proteins.
    Although several genes involved in apoptosis have been identified recently, the mechanisms that regulate and execute this process are still not fully understood. Drosophila is providing powerful new approaches for studying both the... more
    Although several genes involved in apoptosis have been identified recently, the mechanisms that regulate and execute this process are still not fully understood. Drosophila is providing powerful new approaches for studying both the signalling pathways that activate apoptosis, and the components of the basic cell death programme. Here, we summarize progress in understanding how distinct signals influence the death of particular cells in Drosophila, and then review recent results that suggest these act through a single pathway in which the reaper gene product plays a central role.
    Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders.... more
    Apoptosis is a morphologically distinct form of programmed cell death that plays a major role during development, homeostasis, and in many diseases including cancer, acquired immunodeficiency syndrome, and neurodegenerative disorders. Apoptosis occurs through the activation of a cell-intrinsic suicide program. The basic machinery to carry out apoptosis appears to be present in essentially all mammalian cells at all times, but the activation of the suicide program is regulated by many different signals that originate from both the intracellular and the extracellular milieu. Genetic studies in the nematode Caenorhabditis elegans and in the fruit fly Drosophila melanogaster have led to the isolation of genes that are specifically required for the induction of programmed cell death. At least some components of the apoptotic program have been conserved among worms, insects, and vertebrates.
    Studies in Drosophila melanogaster reveal a mechanism for regulating caspases, the key executioners of the apoptotic cell-death program. An initiator caspase and its activating partner promote degradation of each other, thereby limiting... more
    Studies in Drosophila melanogaster reveal a mechanism for regulating caspases, the key executioners of the apoptotic cell-death program. An initiator caspase and its activating partner promote degradation of each other, thereby limiting the levels of the active protease complex. This negative-feedback inhibition helps to explain how cells avoid unwanted caspase activation and apoptosis.
    ABSTRACT During development, tissue growth is controlled by coordinated cellular growth and apoptosis. A series of recent papers describes a newly identified Drosophila gene, hippo, that restricts excessive growth during development by... more
    ABSTRACT During development, tissue growth is controlled by coordinated cellular growth and apoptosis. A series of recent papers describes a newly identified Drosophila gene, hippo, that restricts excessive growth during development by both limiting cell cycle progression and promoting susceptibility to apoptosis. Therefore, hippo may coordinate the regulation of cell division and cell death.

    And 103 more