Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Kornél Lefkovics

    Kornél Lefkovics

    ELTE, Biology, Graduate Student
    The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we... more
    The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.
    The type II classic cadherin subfamily contains a number of extensively studied genes (cdh6, cdh8, cdh11); however, the expression and function of the other members have only been partially described. Here we employed... more
    The type II classic cadherin subfamily contains a number of extensively studied genes (cdh6, cdh8, cdh11); however, the expression and function of the other members have only been partially described. Here we employed reverse‐transcription polymerase chain reaction (RT‐PCR) and in situ hybridization to characterize cortical and hippocampal expression of all type II cadherins (with the exception of the nonneural Cdh5) in the developing and adult mouse brain. Many of these genes have ubiquitous mRNA distribution patterns throughout development, indicating high functional redundancy, which might be necessary for safe production of the strictly laminated structure of these regions. A few of the genes examined, however, exhibit a unique spatiotemporal pattern of expression, particularly during cortical development, indicating a potentially specific function. In the developing and adult hippocampus, almost all of these genes are strongly expressed in glutamatergic neurons of the CA1‐CA3 pyramidal cell layer and the granular layer of the dentate gyrus. In contrast, there are significant expression differences within the GABAergic cells of the adult hippocampus. Our results indicate that selective expression of type II cadherins may generate a flexible cell‐adhesion machinery for developing neurons to selectively bind to each other, but can also provide a high level of security due to the multiple overlaps in the expression domains. J. Comp. Neurol. 520:1387–1405, 2012. © 2011 Wiley Periodicals, Inc.
    The type II classic cadherin subfamily contains a number of extensively studied genes (cdh6, cdh8, cdh11); however, the expression and function of the other members have only been partially described. Here we employed... more
    The type II classic cadherin subfamily contains a number of extensively studied genes (cdh6, cdh8, cdh11); however, the expression and function of the other members have only been partially described. Here we employed reverse-transcription polymerase chain reaction (RT-PCR) and in situ hybridization to characterize cortical and hippocampal expression of all type II cadherins (with the exception of the nonneural Cdh5) in the developing and adult mouse brain. Many of these genes have ubiquitous mRNA distribution patterns throughout development, indicating high functional redundancy, which might be necessary for safe production of the strictly laminated structure of these regions. A few of the genes examined, however, exhibit a unique spatiotemporal pattern of expression, particularly during cortical development, indicating a potentially specific function. In the developing and adult hippocampus, almost all of these genes are strongly expressed in glutamatergic neurons of the CA1-CA3 pyramidal cell layer and the granular layer of the dentate gyrus. In contrast, there are significant expression differences within the GABAergic cells of the adult hippocampus. Our results indicate that selective expression of type II cadherins may generate a flexible cell-adhesion machinery for developing neurons to selectively bind to each other, but can also provide a high level of security due to the multiple overlaps in the expression domains.
    Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied, but with little consensus. Two main candidate regions have been... more
    Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied, but with little consensus. Two main candidate regions have been identified: the posterior inferior frontal gyrus (pIFG) and the posterior middle temporal gyrus (pMTG). Integrating research in linguistics, psycholinguistics, and neuroscience, we propose a neuroanatomical framework for syntax that attributes distinct syntactic computations to these regions in a unified model. The key theoretical advances are adopting a modern lexicalized view of syntax in which the lexicon and syntactic rules are intertwined, and recognizing a computational asymmetry in the role of syntax during comprehension and production. Our model postulates a hierarchical lexical-syntactic function to the pMTG, which interconnects previously identified speech perception and conceptual-semantic systems in the temporal and inferior parietal lobes, c...