Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Human macrophages infected with Mycobacterium tuberculosis may undergo apoptosis. Macrophage apoptosis contributes to the innate immune response against M. tuberculosis by containing and limiting the growth of mycobacteria and also by... more
Human macrophages infected with Mycobacterium tuberculosis may undergo apoptosis. Macrophage apoptosis contributes to the innate immune response against M. tuberculosis by containing and limiting the growth of mycobacteria and also by depriving the bacillus of its niche cell. Apoptosis of infected macrophages is well documented; however, bystander apoptosis of uninfected macrophages has not been described in the setting of M. tuberculosis. We observed that uninfected human macrophages underwent significant bystander apoptosis 48 and 96 h after they came into contact with macrophages infected with avirulent M. tuberculosis. The bystander apoptosis was significantly greater than the background apoptosis observed in uninfected control cells cultured for the same length of time. There was no evidence of the involvement of tumor necrosis factor alpha, Fas, tumor necrosis factor-related apoptosis-inducing ligand, transforming growth factor β, Toll-like receptor 2, or MyD88 in contact-mediated bystander apoptosis. This newly described phenomenon may further limit the spread of M. tuberculosis by eliminating the niche cells on which the bacillus relies.
Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there... more
Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there is still a need for an advanced, efficient TB treatment. An adjunctive, host-directed therapy designed to enhance endogenous pathways and hence compliment current regimens could be the answer. The integration of drug repurposing, including synthetic and naturally occurring compounds, with a targeted drug delivery platform is an attractive development option. In order for a new anti-tubercular treatment to be produced in a timely manner, a multidisciplinary approach should be taken from the outset including stakeholders from academia, the pharmaceutical industry, and regulatory bodies keeping the patient as the key focus. Pre-clinical considerations for the development of a targeted host-directed therapy are discussed here.
Research Interests:
A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under... more
A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.
Research Interests:
The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable... more
The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immu-nogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 mac-rophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow derived macrophages expressing GFP-tagged LC3 demonstrated induction of autop-hagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such " added value " could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.
Research Interests:
Over activation of CD4+ T cells in the peripheral blood and airway tissues is characteristic of asthma; therefore, we investigated whether activated T cells from asthmatic subjects have altered apoptotic potential through the Fas death... more
Over activation of CD4+ T cells in the peripheral blood and airway tissues is characteristic of asthma; therefore, we investigated whether activated T cells from asthmatic subjects have altered apoptotic potential through the Fas death receptor. We found that mitogen-stimulated peripheral blood T cells of asthmatic subjects expressed cell surface Fas, but failed to undergo the normal degree of apoptosis after Fas receptor ligation. T cells from asthmatics exhibited normal apoptotic responses to gamma-irradiation (dependent on IL-1 converting enzyme family proteases), ceramide, and mitogen challenge, suggesting functional integrity of the apoptotic pathway. Furthermore, the defect in Fas-dependent apoptosis was overcome by prestimulation with allogeneic accessory cells instead of mitogen. Taken together, the findings suggest that selective resistance to Fas-dependent apoptosis reflects altered Ag-driven, accessory cell-dependent signaling and that ineffective activation of Fas signal transduction may contribute to T cell-dependent immunoinflammation in asthma.
Research Interests:
Inhaled therapies in the form of drugs or vaccines for tuberculosis treatment were reported about a decade ago. Experts around the world met to discuss the scientific progress in inhaled therapies at the international symposium... more
Inhaled therapies in the form of drugs or vaccines for tuberculosis treatment were reported about a decade ago. Experts around the world met to discuss the scientific progress in inhaled therapies at the international symposium "Optimization of inhaled Tuberculosis therapies and implications for host-pathogen interactions" held in New Delhi, India on November 3-5, 2009. The meeting was organized by the Central Drug Research Institute (CDRI) Lucknow, India. The lung is the main route for infection with Mycobacterium tuberculosis bacilli and the primary site of reactivation of latent disease. The only available vaccine BCG is relatively ineffective at preventing tuberculosis disease and current therapy requires prolonged treatment with drugs which results in low patient compliance. Consequently, there is a need to design new vaccines and therapies for this disease. Recently there has been increased interest in the development of inhaled formulations to deliver anti-mycobacterial drugs and vaccines directly to the lung and many of these therapies are designed to target lung macrophages and dendritic cells. However, the development of effective inhaled therapies requires an understanding of the unique function and immunosuppressive environment of the lung which is driven, in part, by alveolar macrophages and dendritic cells. In this review, we will discuss the role of alveolar macrophages and dendritic cells in the host immune response to M. tuberculosis infection and the ways in which inhaled therapies might enhance the anti-microbial response of phagocytes and boost pulmonary immunity.
Research Interests:
Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for... more
Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for their promising applications in next generation nanoelectronics and nanodevices. However, serious concerns remain about possible health and safety risks they may pose. Here, we employed a multi-modal systematic biocompatibility assessment of thin films incorporating AgNW. To represent the possible routes of nanomaterial entry during occupational or environmental exposure, we employed four different cell lines of epithelial, endothelial, gastric, and phagocytic origin. Utilizing a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we observed a low level of cytotoxicity of AgNW, which was dependent on cell type, nanowire lengths, doses and incubation times. Similarly, no major cytotoxic effects were induced by AgNW-containing thin films, as detected by conventional cell viability and imaging assays. However, transmission electron microscopy and Western immunoblotting analysis revealed AgNW-induced autophasosome accumulation together with an upregulation of the autophagy marker protein LC3. Autophagy represents a crucial mechanism in maintaining cellular homeostasis, and our data for the first time demonstrate triggering of such mechanism by AgNW in human phagocytic cells. Finally, atomic force microscopy revealed significant changes in the topology of cells attaching and growing on these films as substrates. Our findings thus emphasize the necessity of comprehensive biohazard assessment of nanomaterials in modern applications and devices and a thorough analysis of risks associated with their possible contact with humans through occupational or environmental exposure.
Research Interests:
Structural characterization for ovine prostaglandin H synthase-1 (PGHS-1) is extensive, but the corresponding structure for the homologous ovine PGHS-2 isoform is undefined. Accordingly, we isolated a full-length (3.4 kb) ovine PGHS-2... more
Structural characterization for ovine prostaglandin H synthase-1 (PGHS-1) is extensive, but the corresponding structure for the homologous ovine PGHS-2 isoform is undefined. Accordingly, we isolated a full-length (3.4 kb) ovine PGHS-2 cDNA from a primary-culture cell model (ovine tracheal epithelial cells) originally described as containing both PGHS isoforms. Analysis of ovine PGHS-2 cDNA sequence indicated conservation of critical amino acid residues, but differences in other hydrophilic regions allowed for the development of an anti-peptide antibody highly selective for PGHS-2. Enzymatic activities of the recombinant ovine PGHS isozymes indicated significant differences in response to aspirin-acetylation consistent with the characteristics of endogenous cellular PGHS activities under basal and serum-induced conditions. The results fully account for previous evidence of two distinct PGHS activities in cultured airway epithelial cells and provide for additional definition of PGHS structure-function relationships.
Research Interests:
The concept that airway inflammation leads to airway disease has led to a widening search for the types of cellular and molecular interactions responsible for linking the initial stimulus to the final abnormality in airway function. It... more
The concept that airway inflammation leads to airway disease has led to a widening search for the types of cellular and molecular interactions responsible for linking the initial stimulus to the final abnormality in airway function. It has not yet been possible to integrate all of this information into a single model for the development of airway inflammation and remodeling, but a useful framework has been based on the behavior of the adaptive immune system. In that paradigm, an exaggeration of T-helper type 2 (Th2) over Th1 responses to allergic and nonallergic stimuli leads to airway inflammatory disease, especially asthma. In this review, we summarize alternative evidence that the innate immune system, typified by actions of airway epithelial cells and macrophages, may also be specially programmed for antiviral defense and abnormally programmed in inflammatory disease. Furthermore, this abnormality may be inducible by paramyxoviral infection and, in the proper genetic background, may persist indefinitely. Taken together, we propose a new model that highlights specific interactions between epithelial, viral, and allergic components and so better explains the basis for airway immunity, inflammation, and remodeling in response to viral infection and the development of long-term disease phenotypes typical of asthma and other hypersecretory airway diseases.
Research Interests:
Research Interests:
With an ever increasing number of particulate drug delivery systems being developed for the intracellular delivery of therapeutics a robust high-throughput method for studying particle-cell interactions is urgently required. Current... more
With an ever increasing number of particulate drug delivery systems being developed for the intracellular delivery of therapeutics a robust high-throughput method for studying particle-cell interactions is urgently required. Current methods used for analyzing particle-cell interaction include spectrofluorimetry, flow cytometry, and fluorescence/confocal microscopy, but these methods are not high throughput and provide only limited data on the specific number of particles delivered intracellularly to the target cell. The work herein presents an automated high-throughput method to analyze microparticulate drug delivery system (DDS) uptake byalveolar macrophages. Poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared in a range of sizes using a solvent evaporation method. A human monocyte cell line (THP-1) was differentiated into macrophage like cells using phorbol 12-myristate 13-acetate (PMA), and cells were treated with microparticles for 1 h and studied using confocal laser scanning microscopy (CLSM), spectrofluorimetry and a high-content analysis (HCA). PLGA microparticles within the size range of 0.8-2.1 μm were found to be optimal for macrophage targeting (p < 0.05). Uptake studies carried out at 37 °C and 4 °C indicated that microparticles were internalized in an energy dependent manner. To improve particle uptake, a range of opsonic coatings were assessed. Coating PLGA particles with gelatin and ovalbumin was found to significantly increase particle uptake from 2.75 ± 0.98 particles per cell for particles coated with gelatin. Opsonic coating also significantly increased particle internalization into primary human alveolar macrophages (p < 0.01) with a 1.7-fold increase in uptake from 4.19 ± 0.48 for uncoated to 7.53 ± 0.88 particles per cell for coated particles. In comparison to techniques such as spectrofluorimetry and CLSM, HCA provides both qualitative and quantitative data on the influence of carrier design on cell targeting that can be gathered in a high-throughput format and therefore has great potential in the screening of intracellularly targeted DDS.
Research Interests:
Research Interests:
Research Interests:
Research Interests:
Research Interests: