gluonts.mx.distribution.box_cox_transform module#

class gluonts.mx.distribution.box_cox_transform.BoxCoxTransform(lambda_1: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], lambda_2: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], tol_lambda_1: float = 0.01, F=None)[source]#

Bases: gluonts.mx.distribution.bijection.Bijection

Implements Box-Cox transformation of a uni-variate random variable.

The Box-Cox transformation of an observation \(z\) is given by:

\[\begin{split}BoxCox(z; \lambda_1, \lambda_2) = \begin{cases} ((z + \lambda_2)^{\lambda_1} - 1) / \lambda_1, \quad & \text{if } \lambda_1 \neq 0, \\ \log (z + \lambda_2), \quad & \text{otherwise.} \end{cases}\end{split}\]

Here, \(\lambda_1\) and \(\lambda_2\) are learnable parameters. Note that the domain of the transformation is not restricted.

For numerical stability, instead of checking \(\lambda_1\) is exactly zero, we use the condition

\[|\lambda_1| < tol\_lambda\_1\]

for a pre-specified tolerance tol_lambda_1.

Inverse of the Box-Cox Transform is given by

\[\begin{split}BoxCox^{-1}(y; \lambda_1, \lambda_2) = \begin{cases} (y \lambda_1 + 1)^{(1/\lambda_1)} - \lambda_2, \quad & \text{if } \lambda_1 \neq 0, \\ \exp (y) - \lambda_2, \quad & \text{otherwise.} \end{cases}\end{split}\]

Notes on numerical stability:

1. For the forward transformation, \(\lambda_2\) must always be chosen such that

\[z + \lambda_2 > 0.\]

To achieve this one needs to know a priori the lower bound on the observations. This is set in BoxCoxTransformOutput, since \(\lambda_2\) is learnable.

2. Similarly for the inverse transformation to work reliably, a sufficient condition is

\[y \lambda_1 + 1 \geq 0,\]

where \(y\) is the input to the inverse transformation.

This cannot always be guaranteed especially when \(y\) is a sample from a transformed distribution. Hence we always truncate \(y \lambda_1 + 1\) at zero.

An example showing why this could happen in our case: consider transforming observations from the unit interval (0, 1) with parameters

\[\begin{split}\begin{align} \lambda_1 = &\ 1.1, \\ \lambda_2 = &\ 0. \end{align}\end{split}\]

Then the range of the transformation is (-0.9090, 0.0). If Gaussian is fit to the transformed observations and a sample is drawn from it, then it is likely that the sample is outside this range, e.g., when the mean is close to -0.9. The subsequent inverse transformation of the sample is not a real number anymore.

>>> y = -0.91
>>> lambda_1 = 1.1
>>> lambda_2 = 0.0
>>> (y * lambda_1 + 1) ** (1 / lambda_1) + lambda_2
(-0.0017979146510711471+0.0005279153735965289j)
Parameters
  • lambda_1

  • lambda_2

  • tol_lambda_1 – For numerical stability, treat lambda_1 as zero if it is less than tol_lambda_1

  • F

arg_names = ['box_cox.lambda_1', 'box_cox.lambda_2']#
property args: List#

current values of the parameters

Type

List

property event_dim: int#
f(z: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]#

Forward transformation of observations z

Parameters

z – observations

Returns

Transformed observations

Return type

Tensor

f_inv(y: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]#

Inverse of the Box-Cox Transform.

Parameters

y – Transformed observations

Returns

Observations

Return type

Tensor

log_abs_det_jac(z: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], y: Optional[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]] = None) Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol][source]#

Logarithm of the absolute value of the Jacobian determinant corresponding to the Box-Cox Transform is given by.

\[\begin{split}\log \frac{d}{dz} BoxCox(z; \lambda_1, \lambda_2) = \begin{cases} \log (z + \lambda_2) (\lambda_1 - 1), \quad & \text{if } \lambda_1 \neq 0, \\ -\log (z + \lambda_2), \quad & \text{otherwise.} \end{cases}\end{split}\]

Note that the derivative of the transformation is always non-negative.

Parameters
  • z – observations

  • y – not used

Return type

Tensor

property sign: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]#

Return the sign of the Jacobian’s determinant.

class gluonts.mx.distribution.box_cox_transform.BoxCoxTransformOutput(lb_obs: float = 0.0, fix_lambda_2: bool = True)[source]#

Bases: gluonts.mx.distribution.bijection_output.BijectionOutput

args_dim: Dict[str, int] = {'box_cox.lambda_1': 1, 'box_cox.lambda_2': 1}#
bij_cls#

alias of gluonts.mx.distribution.box_cox_transform.BoxCoxTransform

domain_map(F, *args: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], ...][source]#
property event_shape: Tuple#
class gluonts.mx.distribution.box_cox_transform.InverseBoxCoxTransform(lambda_1: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], lambda_2: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], tol_lambda_1: float = 0.01, F=None)[source]#

Bases: gluonts.mx.distribution.bijection.InverseBijection

Implements the inverse of Box-Cox transformation as a bijection.

arg_names = ['box_cox.lambda_1', 'box_cox.lambda_2']#
property event_dim: int#
class gluonts.mx.distribution.box_cox_transform.InverseBoxCoxTransformOutput(lb_obs: float = 0.0, fix_lambda_2: bool = True)[source]#

Bases: gluonts.mx.distribution.box_cox_transform.BoxCoxTransformOutput

args_dim: Dict[str, int] = {'box_cox.lambda_1': 1, 'box_cox.lambda_2': 1}#
bij_cls#

alias of gluonts.mx.distribution.box_cox_transform.InverseBoxCoxTransform

property event_shape: Tuple#