Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
  • Cagliari, Sardegna, Italy

giuseppe marceddu

The potent anti-HIV-1 activities of L-737,126 (2) and PAS sulfones prompted us to design and test against HIV-1 in acutely infected MT-4 cells a number of novel 1- and 3-benzenesulfonylindoles. Indoles belonging to the 1-benzenesulfonyl... more
The potent anti-HIV-1 activities of L-737,126 (2) and PAS sulfones prompted us to design and test against HIV-1 in acutely infected MT-4 cells a number of novel 1- and 3-benzenesulfonylindoles. Indoles belonging to the 1-benzenesulfonyl series were found poorly or totally inactive. On the contrary, some of the 3-benzenesulfonyl derivatives turned out to be as potent as 2, being endowed with potencies in the low nanomolar concentration range. In particular, (2-methylphenyl)sulfonyl (72) and (3-methylphenyl)sulfonyl (73) derivatives showed EC(50) values of 1 nM. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of 2 furnished derivatives (80 and 83) which showed very potent and selective anti-HIV-1 activity not only against the wt strain, but also against mutants carrying NNRTI-resistant mutations at positions 103 and 181 of the reverse transcriptase gene.
Background Oxidative phosphorylation is central to the energy metabolism of the cell. Due to adaptation to different life-styles and environments, fungal species have shaped their respiratory pathways in the course of evolution. To... more
Background Oxidative phosphorylation is central to the energy metabolism of the cell. Due to adaptation to different life-styles and environments, fungal species have shaped their respiratory pathways in the course of evolution. To identify the main mechanisms behind the evolution of respiratory pathways, we conducted a phylogenomics survey of oxidative phosphorylation components in the genomes of sixty fungal species. Results Besides clarifying orthology and paralogy relationships among respiratory proteins, our results reveal three parallel losses of the entire complex I, two of which are coupled to duplications in alternative dehydrogenases. Duplications in respiratory proteins have been common, affecting 76% of the protein families surveyed. We detect several instances of paralogs of genes coding for subunits of respiratory complexes that have been recruited to other multi-protein complexes inside and outside the mitochondrion, emphasizing the role of evolutionary tinkering. Conclusions Processes of gene loss and gene duplication followed by functional divergence have been rampant in the evolution of fungal respiration. Overall, the core proteins of the respiratory pathways are conserved in most lineages, with major changes affecting the lineages of microsporidia, Schizosaccaromyces and Saccharomyces/Kluyveromyces due to adaptation to anaerobic life-styles. We did not observe specific adaptations of the respiratory metabolism common to all pathogenic species.