Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Emanuel Tschopp
  • Via Valperga Caluso 35
    10125 Torino
    Italy
High-quality scientific illustration is an important visualization tool for natural sciences. In paleontology, drawings help to guide the reader to important features of the fossils under study, and to remove irrelevant information or... more
High-quality scientific illustration is an important visualization tool for natural sciences. In paleontology, drawings help to guide the reader to important features of the fossils under study, and to remove irrelevant information or strong shadows that might obscure parts of photographs. Furthermore, drawings allow for the deformation of the fossils to be corrected. However, for an accurate interpretation of these reconstruction drawings, it is important to provide a detailed report about the creation of the drawings. Herein, we describe the methodology of the reconstruction drawing of a skull of the sauropod dinosaur Galeamopus. After preparation and reconstruction of the skull in the laboratory, illustrations were needed to correct natural deformations, restore missing parts, and highlight critical features for anatomical recognition of the several bones. The illustrations were successful thanks to the collaborative work between the paleontologist and the illustrator. Ilustrações científicas de alta qualidade são uma ferramenta importante de visualização nas ciências naturais. Na paleontologia ajudam o leitor a perceber as estruturas anatómicas importantes dos fósseis em estudo, removendo informação irrelevante, ou eliminar zonas escuras que escondam pormenores dos ossos nas fotografias. Além disso, as ilustrações permitem corrigir de ossos deformados. Para a correcta interpretação das reconstruções efectuadas, é importante existirem relatórios detalhados do processo da ilustração. Vimos descrever a metodologia de ilustração de um crânio de dinossauro saurópode Galeamopus que foi reconstruído. Após a preparação e montagem do crânio no laboratório, as ilustrações tiveram de reajustar as deformações naturais, repor partes em falta, e realçar características essenciais necessárias à compreensão dos diversos ossos. As ilustrações são bem sucedidas graças à colaboração entre o paleontólogo e o ilustrador. How to cite this paper: Mateus, S. and Tschopp, E. (2017). Scientific illustration and reconstruction of a skull of the diplodocid sauropod dinosaur Galeamopus. Journal of Paleontological Techniques, 17:1-11.
Research Interests:
The purpose of this application, under Articles 78.1 and 81.1 of the Code, is to replace Diplodocus longus Marsh, 1878 as the type species of the sauropod dinosaur genus Diplodocus by the much better represented D. carnegii Hatcher, 1901,... more
The purpose of this application, under Articles 78.1 and 81.1 of the Code, is to replace Diplodocus longus Marsh, 1878 as the type species of the sauropod dinosaur genus Diplodocus by the much better represented D. carnegii Hatcher, 1901, due to the undiagnosable state of the holotype of D. longus (YPM 1920, a partial tail and a chevron). The holotype of D. carnegii, CM 84, is a well-preserved and mostly articulated specimen. Casts of it are on display in various museums around the world, and the species has generally been used as the main reference for studies of comparative anatomy or phylogeny of the genus. Both species are known from the Upper Jurassic Morrison Formation of the western United States. The genus Diplodocus is the basis for the family-level taxa Diplodocinae Marsh, 1884, Diplodocidae Marsh, 1884, Diplodocimorpha Marsh, 1884 (Calvo & Salgado, 1995) and Diplodocoidea Marsh, 1884 (Upchurch, 1995). It is also a specifier of at least 10 phylogenetic clades.  With the replacement of D. longus by D. carnegii as type species, Diplodocus could be preserved as a taxonomic name with generally accepted content. Taxonomic stability of the entire clade Diplodocoidea, and the proposed definitions of several clades within Sauropoda, could be maintained.
Research Interests:
Vertebral laminae are bony ridges or sheets that connect important morphological landmarks on the vertebrae, like diapophyses or zygapophyses. They usually exhibit some serial variation throughout the column. A consistent terminology... more
Vertebral laminae are bony ridges or sheets that connect important morphological landmarks on the vertebrae, like diapophyses or zygapophyses. They usually exhibit some serial variation throughout the column. A consistent terminology facilitates the morphological description of this variation, and the recognition of patterns that could be taxonomically significant and could serve as phylogenetic characters. Such a terminology was designed for saurischian dinosaurs, and has also been applied to other members of Archosauri-formes. Herein, this terminology is applied for the first time to lizards (Squamata). Probably due to their generally smaller size compared to saurischian dinosaurs, lizards have less developed vertebral laminae. Some laminae could not be recognized in this group and others require new names to account for differences in basic vertebral morphology. For instance, the fusion of diapophysis and parapophysis in lacertids into a structure called synapophysis necessitates the creation of the new term synapophyseal laminae for both diapophyseal and parapophyseal laminae. An assessment of occurrence and serial variation in a number of lacertid species shows that some laminae develop throughout ontogeny or only occur in large-sized species, whereas the distribution of other laminae might prove to be taxonomically significant in future.
Research Interests:
Camarasaurus is considered one of the best known sauropod dinosaurs from the Upper Jurassic Morrison Formation of the USA. Numerous finds are referred to four widely accepted species: C. supremus (type species), C. grandis, C. lentus, and... more
Camarasaurus is considered one of the best known sauropod dinosaurs from the Upper Jurassic Morrison Formation of the USA. Numerous finds are referred to four widely accepted species: C. supremus (type species), C. grandis, C. lentus, and C. lewisi. The osteology of the genus is considered completely known, but this knowledge is mostly based on specimens referred to Camarasaurus without using phylogenetic methods. The state of the holotypic material is often deemed unfavorable for phylogenetic methods. Type specimens were found mingled with other specimens (AMNH 5760 with 5761; YPM 1901 with 1902 and 1905), and two species are based on juvenile material (C. grandis, C. lentus). Phylogenetic studies thus generally include Camarasaurus as genus. As such, intrageneric variation is excluded a priori, and the possibility that some specimens used for scoring might be erroneously referred to the genus is ignored. In order to assess the species taxonomy of Camarasaurus, a specimen-level cla...
Research Interests:
Skeletons of sauropods are rarely found with fore and hind feet, and until now, only one specimen of this clade has been reported with all four autopodia preserved complete and articulated. This makes interpretations on their locomotion... more
Skeletons of sauropods are rarely found with fore and hind feet, and until now, only one specimen of this clade has been reported with all four autopodia preserved complete and articulated. This makes interpretations on their locomotion difficult and proper assignments of footprints to genus- or even species-level taxa are generally impossible. Camarasaurus SMA 0002 from the Upper Jurassic Morrison Formation at Howe Ranch in the vicinity of Shell (Wyoming, USA) is the first sauropod with completely preserved and articulated osteological remains of all feet in addition to autopodial skin impressions. We describe in detail the morphology of the SMA 0002 autopodial bones and integumentary impressions, and draw comparisons with the published data on Camarasaurus and other sauropod manus and pedes. Our reconstruction orients the lateral side of the manus claw such that it faces the ground and possibly even contacts it distally. A 3D reconstruction of the autopodia of SMA 0002 yields new insights into the still debated relationship of footprint lengths to hip height in sauropods, and indicates that it might be variable among genera. Furthermore, manual and pedal morphology and the 3D model yield crucial information about the expected footprint shape of Camarasaurus. The recovered characteristics of the footprint do not possess a set of features to be confidently referred to a known ichnospecies.
Research Interests:
Diplodocidae are among the best known sauropod dinosaurs. Several species were described in the late 1800s or early 1900s from the Morrison Formation of North America. Since then, numerous additional specimens were recovered in the USA,... more
Diplodocidae are among the best known sauropod dinosaurs. Several species were described in the late 1800s or early 1900s from the Morrison Formation of North America. Since then, numerous additional specimens were recovered in the USA, Tanzania, Portugal, and Argentina, as well as possibly Spain, England, Georgia, Zimbabwe, and Asia. To date, the clade includes about 12 to 15 nominal species, some of them with questionable taxonomic status (e.g., ‘Diplodocus’ hayi or Dyslocosaurus polyonychius), and ranging in age from Late Jurassic to Early Cretaceous. However, intrageneric relationships of the iconic, multi-species genera Apatosaurus and Diplodocus are still poorly known. The way to resolve this issue is a specimen-based phylogenetic analysis, which has been previously implemented for Apatosaurus, but is here performed for the first time for the entire clade of Diplodocidae.

The analysis includes 81 operational taxonomic units, 49 of which belong to Diplodocidae. The set of OTUs includes all name-bearing type specimens previously proposed to belong to Diplodocidae, alongside a set of relatively complete referred specimens, which increase the amount of anatomically overlapping material. Non-diplodocid outgroups were selected to test the affinities of potential diplodocid specimens that have subsequently been suggested to belong outside the clade. The specimens were scored for 477 morphological characters, representing one of the most extensive phylogenetic analyses of sauropod dinosaurs. Character states were figured and tables given in the case of numerical characters.

The resulting cladogram recovers the classical arrangement of diplodocid relationships. Two numerical approaches were used to increase reproducibility in our taxonomic delimitation of species and genera. This resulted in the proposal that some species previously included in well-known genera like Apatosaurus and Diplodocus are generically distinct. Of particular note is that the famous genus Brontosaurus is considered valid by our quantitative approach. Furthermore, “Diplodocus” hayi represents a unique genus, which will herein be called Galeamopus gen. nov. On the other hand, these numerical approaches imply synonymization of “Dinheirosaurus” from the Late Jurassic of Portugal with the Morrison Formation genus Supersaurus. Our use of a specimen-, rather than species-based approach increases knowledge of intraspecific and intrageneric variation in diplodocids, and the study demonstrates how specimen-based phylogenetic analysis is a valuable tool in sauropod taxonomy, and potentially in paleontology and taxonomy as a whole.
Research Interests:
Several types of pathological bony overgrowth are known from various dinosaur taxa but, except for stress fractures, are rarely reported from appendicular elements. Herein we describe pathological manual and pedal phalanges of a... more
Several types of pathological bony overgrowth are known from various dinosaur taxa but, except for stress fractures, are rarely reported from appendicular elements. Herein we describe pathological manual and pedal phalanges of a camarasaurid sauropod (SMA 0002), which show features rarely recognised in non-avian dinosaurs. They include lateral osteophytes and smoothing of phalangeal articular surfaces, a deep pit, proximal enthesophytes in pedal unguals, distal overgrowth associated with a fracture, and a knob-like overgrowth lateral to the distal condyles of a pedal phalanx. Their causes were assessed by means of visual examination, CT scans, and bone histology, where possible. The lateral osteophytes are interpreted as symptoms of osteoarthritis. The ossified tendon insertions in the unguals are most probably the result of prolonged, heavy use of the pedal claws, possibly for scratchdigging. The distal overgrowth is interpreted to have developed due to changed stress regimes, and to be the cause for the fracture. The deep pit represents most likely a case of osteochondrosis, whereas the knob-like overgrowth likely represents a post-traumatic phenomenon not previously reported in dinosaurs. The study confirms that a rigorous assessment of pathologies can yield information about behaviour in long-extinct animals.
Research Interests:
Research Interests:
A new taxon of diplodocid sauropod, Kaatedocus siberi gen. et sp. nov., is recognized based on well-preserved cervical vertebrae and skull from the Morrison Formation (Kimmeridgian, Late Jurassic) of northern Wyoming, USA. A phylogenetic... more
A new taxon of diplodocid sauropod, Kaatedocus siberi gen. et sp. nov., is recognized based on well-preserved cervical vertebrae and skull from the Morrison Formation (Kimmeridgian, Late Jurassic) of northern Wyoming, USA. A phylogenetic analysis places it inside Diplodocinae (Sauropoda: Flagellicaudata: Diplodocidae), as a sister taxon to a clade uniting Tornieria africana and the classical diplodocines Barosaurus lentus and Diplodocus. The taxon is diagnosed by a unique combination of plesiomorphic and derived traits, as well as the following unambiguous autapomorphies within Diplodocidae: frontals separated anteriorly by a U-shaped notch; squamosals restricted to the post-orbital region; presence of a postparietal foramen; a narrow, sharp and distinct sagittal nuchal crest; the paired basal tuber with a straight anterior edge in ventral view; anterior end of the prezygapophyses of mid- and posterior cervical vertebrae is often an anterior extension of the pre-epipophysis, which projects considerably anterior to the articular facet; anterodorsal corner of the lateral side of the posterior cervical vertebrae marked by a rugose tuberosity; posterior margin of the prezygapophyseal articular facet of posterior cervical vertebrae bordered posteriorly by conspicuous transverse sulcus; posterior cervical neural spines parallel to converging. The inclusion of K. siberi and several newly described characters into a previously published phylogenetic analysis recovers the new taxon as basal diplodocine, which concurs well with the low stratigraphical position of the holotype specimen. Dinheirosaurus and Supersaurus now represent the sister clade to Apatosaurus and Diplodocinae and therefore the most basal diplodocid genera. The geographical location in the less known northern parts of the Morrison Fm., where K. siberi was found, corroborates previous hypotheses on faunal provinces within the formation. The probable subadult ontogenetic stage of the holotype specimen allows analysis of ontogenetic changes and their influence on diplodocid phylogeny. http://zoobank.org/urn:lsid:zoobank.org:pub:70181793-AA2D-4F14-BAD2-F12B9D095B3D
Research Interests:
Ossified gastralia, clavicles and sternal ribs are known in a variety of reptilians, including dinosaurs. In sauropods, however, the identity of these bones is controversial. The peculiar shapes of these bones complicate their... more
Ossified gastralia, clavicles and sternal ribs are known in a variety of reptilians, including dinosaurs. In sauropods, however, the identity of these bones is controversial. The peculiar shapes of these bones complicate their identification, which led to various differing interpretations in the past. Here we describe different elements from the chest region of diplodocids, found near Shell, Wyoming, USA. Five morphotypes are easily distinguishable: (A) elongated, relatively stout, curved elements with a spatulate and a bifurcate end resemble much the previously reported sauropod clavicles, but might actually represent interclavicles; (B) short, L-shaped elements, mostly preserved as a symmetrical pair, probably are the real clavicles, as indicated by new findings in diplodocids; (C) slender, rod-like bones with rugose ends are highly similar to elements identified as sauropod sternal ribs; (D) curved bones with wide, probably medial ends constitute the fourth morphotype, herein interpreted as gastralia; and (E) irregularly shaped elements, often with extended rugosities, are included into the fifth morphotype, tentatively identified as sternal ribs and/or intercostal elements. To our knowledge, the bones previously interpreted as sauropod clavicles were always found as single bones, which sheds doubt on the validity of their identification. Various lines of evidence presented herein suggest they might actually be interclavicles – which are single elements. This would be the first definitive evidence of interclavicles in dinosauromorphs. Previously supposed interclavicles in the early sauropodomorph Massospondylus or the theropods Oviraptor and Velociraptor were later reinterpreted as clavicles or furculae. Independent from their identification, the existence of the reported bones has both phylogenetic and functional significance. Their presence in non-neosauropod Eusauropoda and Flagellicaudata and probable absence in rebbachisaurs and Titanosauriformes shows a clear character polarity. This implicates that the ossification of these bones can be considered plesiomorphic for Sauropoda. The proposed presence of interclavicles in sauropods may give further support to a recent study, which finds a homology of the avian furcula with the interclavicle to be equally parsimonious to the traditional theory that furcula were formed by the fusion of the clavicles. Functional implications are the stabilizing of the chest region, which coincides with the development of elongated cervical and caudal vertebral columns or the use of the tail as defensive weapon. The loss of ossified chest bones coincides with more widely spaced limbs, and the evolution of a wide-gauge locomotor style.
Research Interests:
Research Interests:
Research Interests: