Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Adaptive fracture simulation of multi-layered thin plates

Published: 21 July 2013 Publication History

Abstract

The fractures of thin plates often exhibit complex physical behaviors in the real world. In particular, fractures caused by tearing are different from fractures caused by in-plane motions. In this paper, we study how to make thin-plate fracture animations more realistic from three perspectives. We propose a stress relaxation method, which is applied to avoid shattering artifacts after generating each fracture cut. We formulate a fracture-aware remeshing scheme based on constrained Delaunay triangulation, to adaptively provide more fracture details. Finally, we use our multi-layered model to simulate complex fracture behaviors across thin layers. Our experiment shows that the system can efficiently and realistically simulate the fractures of multi-layered thin plates.

Supplementary Material

ZIP File (a52-busaryev.zip)
Supplemental material.
MP4 File (tp143.mp4)

References

[1]
Alava, M., and Niskanen, K. 2006. The physics of paper. Reports on Progress in Physics 69, 3, 669.
[2]
Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics 13, 2 (Mar.), 370--378.
[3]
Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Proc. of SGP, 227--230.
[4]
Boux de Casson, F., and Laugier, C. 2000. Simulating 2d tearing phenomena for interactive medical surgery simulators. In Proc. of the Computer Animation, 9--.
[5]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 594--603.
[6]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. of SCA, 28--36.
[7]
CGAL, 2013. Computational Geometry Algorithms Library. http://www.cgal.org.
[8]
Cheng, S.-W., Dey, T. K., and Shewchuk, J. R. 2012. Delaunay Mesh Generation. CRC Press, Boca Raton, Florida.
[9]
Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 604--611.
[10]
Etzmuß, O., Keckeisen, M., and Straßer, W. 2003. A fast finite element solution for cloth modelling. In Proc. of Pacific Graphics, 244--.
[11]
Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic shells. In Proc. of SCA, 91--98.
[12]
Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A discrete model for inelastic deformation of thin shells. Tech. rep., Aug.
[13]
Grinspun, E., Krysl, P., and Schröder, P. 2002. Charms: a simple framework for adaptive simulation. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 281--290.
[14]
Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of SCA, 62--67.
[15]
Guo, X., Li, X., Bao, Y., Gu, X., and Qin, H. 2006. Meshless thin-shell simulation based on global conformal parameterization. IEEE Transactions on Visualization and Computer Graphics 12, 3 (May), 375--385.
[16]
Iben, H. N., and O'Brien, J. F. 2006. Generating surface crack patterns. In Proc. of SCA, 177--185.
[17]
Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. (SIGGRAPH) 28, 3 (July), 50:1--50:10.
[18]
Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. In Proc. of SGP, 1521--1529.
[19]
Muller, M. 2008. Hierarchical position based dynamics. In VRIPHYS, 1--10.
[20]
Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 152:1--152:10.
[21]
Narain, R., Pfaff, T., and O'Brien, J. F. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. (SIGGRAPH).
[22]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 98, Annual Conference Series, 137--146.
[23]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. (SIGGRAPH) 21, 3 (July), 291--294.
[24]
O'Brien, J. F. 2003. Graphical Modeling and Animation of Brittle Fracture. PhD thesis, Georgia Institute of Technology, Atlanta, GA.
[25]
Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proc. of SCA, 165--175.
[26]
Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July), 957--964.
[27]
Provot, X. 1996. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Proc. of Graphics Interface, 147--154.
[28]
Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. of SCA, 73--80.
[29]
Steinemann, D., Otaduy, M. A., and Gross, M. 2006. Fast arbitrary splitting of deforming objects. In Proc. of SCA, 63--72.
[30]
Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In Proc. of SCA, 155--164.
[31]
Volino, P., and Magnenat-Thalmann, N. 2006. Simple linear bending stiffness in particle systems. In Proc. of SCA, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 101--105.
[32]
Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4 (Sept.), 105:1--105:16.
[33]
Wang, H., O'Brien, J., and Ramamoorthi, R. 2010. Multi-resolution isotropic strain limiting. ACM Trans. Graph. (SIGGRAPH Asia) 29, 6 (Dec.), 156:1--156:10.
[34]
Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM Trans. Graph. (SIGGRAPH) 30, 4 (July), 71:1--71:12.
[35]
Wicke, M., Steinemann, D., and Gross, M. H. 2005. Efficient animation of point-sampled thin shells. Computer Graphics Forum (Eurographics) 24, 3, 667C--676.
[36]
Wicke, M., Botsch, M., and Gross, M. 2007. A finite element method on convex polyhedra. Computer Graphics Forum (Eurographics) 26, 3, 355C--364.
[37]
Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1--49:11.

Cited By

View all
  • (2025)A Hybrid Lagrangian–Eulerian Formulation of Thin‐Shell FractureComputer Graphics Forum10.1111/cgf.15273Online publication date: 11-Jan-2025
  • (2024)Q3T Prisms: A Linear-Quadratic Solid Shell Element for Elastoplastic SurfacesSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687697(1-9)Online publication date: 3-Dec-2024
  • (2023)Simulation of Sea Ice Fragmentation Based on an Improved Voronoi Diagram Algorithm in an Ice Zone Navigation SimulatorJournal of Marine Science and Engineering10.3390/jmse1111204711:11(2047)Online publication date: 25-Oct-2023
  • Show More Cited By

Index Terms

  1. Adaptive fracture simulation of multi-layered thin plates

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 32, Issue 4
    July 2013
    1215 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2461912
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 July 2013
    Published in TOG Volume 32, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. FEM
    2. adaptive remeshing
    3. fracture simulation
    4. layers
    5. thin plates

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)19
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)A Hybrid Lagrangian–Eulerian Formulation of Thin‐Shell FractureComputer Graphics Forum10.1111/cgf.15273Online publication date: 11-Jan-2025
    • (2024)Q3T Prisms: A Linear-Quadratic Solid Shell Element for Elastoplastic SurfacesSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687697(1-9)Online publication date: 3-Dec-2024
    • (2023)Simulation of Sea Ice Fragmentation Based on an Improved Voronoi Diagram Algorithm in an Ice Zone Navigation SimulatorJournal of Marine Science and Engineering10.3390/jmse1111204711:11(2047)Online publication date: 25-Oct-2023
    • (2023)Second-Order Finite Elements for Deformable SurfacesSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618186(1-10)Online publication date: 10-Dec-2023
    • (2022)Declarative Specification for Unstructured Mesh Editing AlgorithmsACM Transactions on Graphics10.1145/3550454.355551341:6(1-14)Online publication date: 30-Nov-2022
    • (2022)Simulation and optimization of magnetoelastic thin shellsACM Transactions on Graphics10.1145/3528223.353014241:4(1-18)Online publication date: 22-Jul-2022
    • (2022)Simulating Fractures With Bonded Discrete Element MethodIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.310673828:12(4810-4824)Online publication date: 1-Dec-2022
    • (2021)A Lagrangian Particle‐based Formulation for Coupled Simulation of Fracture and Diffusion in Thin MembranesComputer Graphics Forum10.1111/cgf.1440440:7(97-108)Online publication date: 27-Nov-2021
    • (2020)AnisoMPMACM Transactions on Graphics10.1145/3386569.339242839:4(37:1-37:16)Online publication date: 12-Aug-2020
    • (2019)Simulation and Visualization of Ductile Fracture with the Material Point MethodProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/33402592:2(1-20)Online publication date: 26-Jul-2019
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media