Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
The effects of clofibrate on the content and composition of liver and plasma lipids was studied in mice fed for 4 wk on diets enriched in n-6 or n-3 polyunsaturated fatty acids (PUFA) from sunflower oil (SO) or fish oil (FO),... more
The effects of clofibrate on the content and composition of liver and plasma lipids was studied in mice fed for 4 wk on diets enriched in n-6 or n-3 polyunsaturated fatty acids (PUFA) from sunflower oil (SO) or fish oil (FO), respectively; both oils were fed at 9% of the diet (dry weight basis). Only FO was hypolipidemic. Both oil regimes led to slightly increased concentrations of phospholipids (PL) and triacylglycerols (TG) in liver as compared with a standard chow diet containing 2% fat. Clofibrate promoted hypolipidemia only in animals fed SO. Its main effect was to enlarge the liver, such growth increasing the amounts of major glycerophospholipids while depleting the TG. SO and FO consumption changed the proportion of n-6 or n-3 PUFA in liver and plasma lipids in opposite ways. After clofibrate action, the PUFA of liver PL were preserved better than in the absence of oil supplementation. However, most of the drug-induced changes (e.g., increased 18:1n-9 and 20:3n-6, decreased 22:6/20:5 ratios) occurred irrespective of lipids being rich in n-6 or n-3 PUFA. The concentration of sphingomyelin (SM), a minor liver lipid that virtually lacks PUFA, increased with the dietary oils, decreased with clofibrate, and changed its fatty acid composition in both situations. Thus, oil-increased SM had more 22:0 and 24:0 than clofibrate-decreased SM, which was significantly richer in 22:1 and 24:1.
ABSTRACT
ABSTRACT
Research Interests:
The formation of 14C-labelled long-chain and very-long-chain (n-3) pentaenoic and hexaenoic fatty acids was studied in bovine retina by following the metabolism of. [14C]-docosapentaenoate [C22:5, n-3 fatty acid (22:5 n-3)],... more
The formation of 14C-labelled long-chain and very-long-chain (n-3) pentaenoic and hexaenoic fatty acids was studied in bovine retina by following the metabolism of. [14C]-docosapentaenoate [C22:5, n-3 fatty acid (22:5 n-3)], [14C]-docosahexaenoate (22:6 n-3), and [14C]acetate. With similar amounts of 22:5 n-3 and 22:6 n-3 as substrates, the former was actively transformed into 24:5 n-3, whereas the latter was virtually unmodified. Labelled 24:5, 26:5, 24:6 and 22:6 were formed from [1-14C]22:5 n-3, showing that pentaenoic fatty acids including 24:5 n-3 can be elongated and desaturated within the retina. When retinal microsomes were incubated with [1-14C]22:5 n-3, 24:5 n-3 was the only fatty acid formed. In retinas incubated with [14C]acetate, 24:5 n-3 was the most highly labelled fatty acid among the polyenes synthesized, 24:6 n-3 being a minor product. Such selectivity in the elongation of two fatty acids identical in length, 22:5 n-3 and 22:6 n-3, despite the fact that 22:5 is a m...
Insulin resistance assessment requires sophisticated methodology of difficult application. Therefore, different estimators for this condition have been suggested. The aim of this study was to evaluate the triglycerides and glucose (TyG)... more
Insulin resistance assessment requires sophisticated methodology of difficult application. Therefore, different estimators for this condition have been suggested. The aim of this study was to evaluate the triglycerides and glucose (TyG) index as a marker of insulin resistance and to compare it to the triglycerides/HDL cholesterol ratio (TG/HDL-C), in subjects with and without metabolic syndrome (MS). An observational, cross-sectional study was conducted on 525 adults of a population from Bahia Blanca, Argentina, who were divided into two groups: with MS (n=89) and without MS (n=436). The discriminating capacities for MS of the TyG index, calculated as Ln (TG [mg/dL] x glucose [mg/dL]/2), and the TG/HDL-C ratio were evaluated. Pre-test probability for MS was 30%. The mean value of the TyG index was higher in the group with MS as compared to the group without MS and its correlation with the TG/HDL-C ratio was good. The cut-off values for MS in the overall population were 8.8 for the TyG index (sensitivity=79%, specificity=86%), and 2.4 for the TG/HDL-C ratio (sensitivity=88%, specificity=72%). The positive likelihood ratios and post-test probabilities for these parameters were 5.8 vs 3.1 and 72% vs 58% respectively. The cut-off point for the TyG index was 8.8 in men and 8.7 in women; the respective values for TG/C-HDL were 3.1 in men and 2.2 in women. The TyG index was a good discriminant of MS. Its simple calculation warrants its further study as an alternative marker of insulin resistance.
The effects of clofibrate on the content and composition of liver and plasma lipids was studied in mice fed for 4 wk on diets enriched in n-6 or n-3 polyunsaturated fatty acids (PUFA) from sunflower oil (SO) or fish oil (FO),... more
The effects of clofibrate on the content and composition of liver and plasma lipids was studied in mice fed for 4 wk on diets enriched in n-6 or n-3 polyunsaturated fatty acids (PUFA) from sunflower oil (SO) or fish oil (FO), respectively; both oils were fed at 9% of the diet (dry weight basis). Only FO was hypolipidemic. Both oil regimes led to slightly increased concentrations of phospholipids (PL) and triacylglycerols (TG) in liver as compared with a standard chow diet containing 2% fat. Clofibrate promoted hypolipidemia only in animals fed SO. Its main effect was to enlarge the liver, such growth increasing the amounts of major glycerophospholipids while depleting the TG. SO and FO consumption changed the proportion of n-6 or n-3 PUFA in liver and plasma lipids in opposite ways. After clofibrate action, the PUFA of liver PL were preserved better than in the absence of oil supplementation. However, most of the drug-induced changes (e.g., increased 18:1n-9 and 20:3n-6, decreased 22:6/20:5 ratios) occurred irrespective of lipids being rich in n-6 or n-3 PUFA. The concentration of sphingomyelin (SM), a minor liver lipid that virtually lacks PUFA, increased with the dietary oils, decreased with clofibrate, and changed its fatty acid composition in both situations. Thus, oil-increased SM had more 22:0 and 24:0 than clofibrate-decreased SM, which was significantly richer in 22:1 and 24:1.
Clofibrate administration significantly altered the amount and fatty acid composition of lipids in mouse liver. The net content of phospholipids (PL) increased and that of triacylglycerols (TG) decreased concomitantly with liver... more
Clofibrate administration significantly altered the amount and fatty acid composition of lipids in mouse liver. The net content of phospholipids (PL) increased and that of triacylglycerols (TG) decreased concomitantly with liver enlargement in mice treated for two weeks with this drug (0.5% w/w in the food). The highest increase among PL was in phosphatidylcholine; other components either showed lower increases or, as in the case of sphingomyelin and the plasmalogens, decreased. In all lipid classes the treatment resulted in altered ratios between major saturates, between saturates and monoenes, and between major polyenes. Among these, 20:3n-6 and 22:5n-3 increased several-fold, and the 20:3n-6/20:4n-6 and 22:5n-3/22:6n-3 ratios increased due to a more active formation of the precursors than of the corresponding products. This change affected all glycerolipid classes. Liver sphingomyelin showed a relative enrichment in monoenoic fatty acids like 22:1 and 24:1, caused by a net decrease in the amount of saturates, particularly 22:0 and 24:0. The stimulated membrane proliferation imposed by clofibrate must increase phospholipid synthesis and, hence, the need for fatty acids. The results suggest that these demands are met mostly by TG acyl groups, either directly or after oxidation/desaturation processes. This was apparently the case for the polyenoic fatty acids of the n-6 and n-3 series. The longer chain (C22 and C24) components decreased, suggesting that their oxidation was stimulated to provide part of the required (C20 and C22) polyenes.