Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
In this article I discuss a hypothesis, known as the somatic marker hypothesis, which I believe is relevant to the understanding of processes of human reasoning and decision making. The ventromedial sector of the prefrontal cortices is... more
In this article I discuss a hypothesis, known as the somatic marker hypothesis, which I believe is relevant to the understanding of processes of human reasoning and decision making. The ventromedial sector of the prefrontal cortices is critical to the operations postulated here, but the hypothesis does not necessarily apply to prefrontal cortex as a whole and should not be seen as an attempt to unify frontal lobe functions under a single mechanism. The key idea in the hypothesis is that ‘marker’ signals influence the processes of response to stimuli, at multiple levels of operation, some of which occur overtly (consciously, ‘in mind’) and some of which occur covertly (non-consciously, in a non-minded manner). The marker signals arise in bioregulatory processes, including those which express themselves in emotions and feelings, but are not necessarily confined to those alone. This is the reason why the markers are termed somatic: they relate to body-state structure and regulation eve...
Effective social functioning relies in part on the ability to identify emotions from auditory stimuli and respond appropriately. Previous studies have uncovered brain regions engaged by the affective information conveyed by sound. But... more
Effective social functioning relies in part on the ability to identify emotions from auditory stimuli and respond appropriately. Previous studies have uncovered brain regions engaged by the affective information conveyed by sound. But some of the acoustical properties of sounds that express certain emotions vary remarkably with the instrument used to produce them, for example the human voice or a violin. Do these brain regions respond in the same way to different emotions regardless of the sound source? To address this question, we had participants (N = 38, 20 females) listen to brief audio excerpts produced by the violin, clarinet, and human voice, each conveying one of three target emotions-happiness, sadness, and fear-while brain activity was measured with fMRI. We used multivoxel pattern analysis to test whether emotion-specific neural responses to the voice could predict emotion-specific neural responses to musical instruments and vice-versa. A whole-brain searchlight analysis ...
Gratitude is a complex emotional feeling associated with universally desirable positive effects in personal, social, and physiological domains. Why or how gratitude achieves these functional outcomes is not clear. Toward the goal of... more
Gratitude is a complex emotional feeling associated with universally desirable positive effects in personal, social, and physiological domains. Why or how gratitude achieves these functional outcomes is not clear. Toward the goal of identifying its' underlying physiological processes, we recently investigated the neural correlates of gratitude. In our study, participants were exposed to gratitude-inducing stimuli, and rated each according to how much gratitude it provoked. As expected, self-reported gratitude intensity correlated with brain activity in distinct regions of the medial pre-frontal cortex associated with social reward and moral cognition. Here we draw from our data and existing literature to offer a theoretical foundation for the physiological correlates of gratitude. We propose that mu-opioid signaling (1) accompanies the mental experience of gratitude, and (2) may account for the positive effects of gratitude on social relationships, subjective wellbeing, and phys...
Research Interests:
DOI: 10.1126/science.275.5304.1293 , 1293 (1997); 275 Science et al. Antoine Bechara, Advantageous Strategy Deciding Advantageously Before Knowing the ... : subject collections This article appears in the following