Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Kenneth Rijsdijk

    Kenneth Rijsdijk

    University of Amsterdam, IBED, Faculty Member
    Research Interests:
    Rotherslade on the Gower Peninsula in south Wales has been viewed as a key site for the reconstruction of Quaternary depositional environments in the British Isles. Since the early 20th century, and certainly since the 1980s, the accepted... more
    Rotherslade on the Gower Peninsula in south Wales has been viewed as a key site for the reconstruction of Quaternary depositional environments in the British Isles. Since the early 20th century, and certainly since the 1980s, the accepted view has been that Rotherslade is the most westerly location on the south Gower coast where there is in situ basal till exposed and that, logically, this location marks the position of the LGM ice limit. However, reinvestigation of the sediments and their architecture, and analysis of clast fabrics and thin sections of critical sedimentary units, show that none of the exposed sediments has properties diagnostic of subglacial deposition or deformation. We postulate here that LGM ice terminated at the western side of Swansea Bay, a few kilometres to the north-east of Rotherslade, and propose that the sedimentary sequence comprises Early to Middle Devensian periglacial sediments, overlain by a complex of Late Devensian, ice-proximal outwash fan deposits, an assemblage of paraglacial debris and, finally, periglacial mass movement deposits. The proposed repositioning of the Late Devensian ice limit and the associated new subaerial interpretation of the sediments suggest that a reassessment of sedimentary sequences (Hunts Bay, Western Slade) and landforms (Paviland Moraine) farther west on Gower, which have attained similar stratigraphical status, is now warranted. Copyright © 2008 John Wiley & Sons, Ltd.
    This study is part of a basin-wide re-evaluation of Irish Sea glacigenic deposits which aims to test whether diamicts, collectively known as Irish Sea Tills, represent in situ glacimarine sediments or sediments that have been reworked or... more
    This study is part of a basin-wide re-evaluation of Irish Sea glacigenic deposits which aims to test whether diamicts, collectively known as Irish Sea Tills, represent in situ glacimarine sediments or sediments that have been reworked or deformed by the Last Glacial Maximum Irish Sea Glacier. New results are presented for two key localities at Abermawr and Traeth y Mwnt in Wales. Unlike previous studies in the Irish Sea region that have focused on macro-scale sedimentology and structural analyses, this study combines macro-scale and micro-scale sedimentary analyses. This approach reveals that the dominant diamict facies at Abermawr are subglacially deformed primary (glaci)marine deposits, emplaced by the Irish Sea Glacier. An inland glacial source is unlikely. The Traeth y Mwnt diamicts are likely to be subaqueous in origin, possibly formed in an ice-dammed lake in the Mwnt embayment. There are no indications of subglacial deformation or shearing at Mwnt; deformation structures are related to gravity-driven or density-driven mechanisms.
    By analysing a series of four successive thin-sections from a ceramic clay that was subjected to uniaxial compression, we were able to monitor the development of microstructures in a fine-grained sediment. The artificially induced... more
    By analysing a series of four successive thin-sections from a ceramic clay that was subjected to uniaxial compression, we were able to monitor the development of microstructures in a fine-grained sediment. The artificially induced microstructures, such as unidirectional clay reorientations and linear and circular grain arrangements, are identical to features that have been observed in thin-sections of subglacially deformed tills, and therefore may be used as representative analogues. We argue that the structures, reflecting slip, planar shear displacements as well as rotational movements, can be explained by assuming a Coulomb-plastic response to imposed shear. We conclude that sediments subjected to subglacial deformation behave as Coulomb materials, at least during the final stages of the deformation. The present study bridges the gap between field studies, experimental studies and theoretical modelling. The microscopic observations assist in visualising inferred subglacial processes and facilitate up- and downscaling between diverse methodological approaches. Copyright © 2003 John Wiley & Sons, Ltd.
    Subglacial deformation structures of a complexly deformed glacigenic sequence at Killiney Bay, Ireland provide a window in the subglacial rheological dynamics of tills. Deformation geometries are dominated by pure shear, simple shear and... more
    Subglacial deformation structures of a complexly deformed glacigenic sequence at Killiney Bay, Ireland provide a window in the subglacial rheological dynamics of tills. Deformation geometries are dominated by pure shear, simple shear and compressional deformation styles with abundant evidence for glacitectonic induced fracturing and hydrofracturing. Glacigenic diamicton facies associations (FA's) are interpreted as glacitectonically stacked diachroneous units younging laterally away from palaeo-icemargins. Simultaneous deposition of proximal overconsolidated subglacial tills and distal low-viscosity flow tills occurred, with the latter being deformed during re-advances. Structural chronology of deformation styles demonstrates polygenesis of FA's: initially deposited as low viscosity flow tills with vertical deformation styles, glacial overriding resulted in overconsolidated and redeformed subglacial tills with pure and simple shear styles. Low viscosity, low density diamictons later subglacially deformed and dewatered to form overconsolidated tills. This is reflected in tills showing density driven deformation, which are overprinted by brittle deformation associated with shear. Such overprinting indicates a rise in viscosity and shear strength of the tills during deformation. Two types are recognised: one associated with deformed diapirs and another with fluid escape structures.
    Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the... more
    Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the geometry of structures rather than inferred environment of formation. Five styles are recognised: pure shear (P), simple shear (S), compressional (C), vertical (V) and undeformed (U). These dictate the first letter of the codes; the remaining letters conveying the evidence. This information can be used to reconstruct palaeostress fields and to infer physical properties of sediments when they deformed. Individual structures are not diagnostic of particular environments but the suite of structures, their relative scale, stratigraphical relationships, and orientation relative to palaeoslopes and to palaeoice-flow directions can be used to infer the environment in which they formed. This scheme is applied at five sites in west Wales. The typical succession is interpreted as subglacial sediments overlain by meltout tills, flow tills and sediment flows. Paraglacial redistribution of glacial sediments is widespread. Large-scale compressional deformation is restricted to sites where glaciers readvanced. Large-scale vertical deformation occurs where water was locally ponded near the ice margin. There is no evidence for glaciomarine conditions. Copyright
    Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the... more
    Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the geometry of structures rather than inferred environment of formation. Five styles are recognised: pure shear (P), simple shear (S), compressional (C), vertical (V) and undeformed (U). These dictate the first letter of the codes; the remaining letters conveying the evidence. This information can be used to reconstruct palaeostress fields and to infer physical properties of sediments when they deformed. Individual structures are not diagnostic of particular environments but the suite of structures, their relative scale, stratigraphical relationships, and orientation relative to palaeoslopes and to palaeoice-flow directions can be used to infer the environment in which they formed. This scheme is applied at five sites in west Wales. The typical succession is interpreted as subglacial sediments overlain by meltout tills, flow tills and sediment flows. Paraglacial redistribution of glacial sediments is widespread. Large-scale compressional deformation is restricted to sites where glaciers readvanced. Large-scale vertical deformation occurs where water was locally ponded near the ice margin. There is no evidence for glaciomarine conditions. Copyright © 2003 John Wiley & Sons, Ltd.
    Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647.... more
    Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502-3885.2009.00138.x. ISSN 0300-9483.Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice-stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice-sheet reconstructions.
    No Abstract.