In recent years, functional imaging studies have revealed a supraspinal network, which is involve... more In recent years, functional imaging studies have revealed a supraspinal network, which is involved in perception and processing of bladder distention. Very little information exists on the cortical representation of C-fiber transmitted temperature sensation of the human bladder, although C-fibers seem to be involved in the pathomechanisms of bladder dysfunctions. Our aim was, therefore, to evaluate the outcome of bladder cold stimulation on supraspinal activity using functional magnetic resonance imaging (fMRI). A block design fMRI study was performed in 14 healthy females at the MR-center of the University of Zurich. After catheterization, all subjects were investigated in a 3.0-Tesla Scanner. The scanning consisted of 10 repetitive cycles. Each cycle consisted of five conditions: REST, INFUSION, SENSATION, DRAIN 1, and DRAIN 2. Cold saline was passively infused at 4-8°C during scanning. Not more than 100 ml were infused per cycle. Blood-oxygen-level-dependent (BOLD) signal analysi...
With continuous refinement of neurosurgical techniques and higher resolution in neuroimaging, the... more With continuous refinement of neurosurgical techniques and higher resolution in neuroimaging, the management of pontine lesions is constantly improving. Among pontine structures with vital functions that are at risk of being damaged by surgical manipulation, cranial nerves (CN) and cranial nerve nuclei (CNN) such as CN V, VI, and VII are critical. Pre-operative localization of the intrapontine course of CN and CNN should be beneficial for surgical outcomes. Our objective was to accurately localize CN and CNN in patients with intra-axial lesions in the pons using diffusion tensor imaging (DTI) and estimate its input in surgical planning for avoiding unintended loss of their function during surgery. DTI of the pons obtained pre-operatively on a 3 Tesla MR scanner was analyzed prospectively for the accurate localization of CN and CNN V, VI and VII in seven patients with intra-axial lesions in the pons. Anatomical sections in the pons were used to estimate abnormalities on color-coded f...
Motor imagery (MI) has shown effectiveness in enhancing motor performance. This may be due to the... more Motor imagery (MI) has shown effectiveness in enhancing motor performance. This may be due to the common neural mechanisms underlying MI and motor execution (ME). The main region of the ME network, the primary motor cortex (M1), has been consistently linked to motor performance. However, the activation of M1 during motor imagery is controversial, which may account for inconsistent rehabilitation therapy outcomes using MI. Here, we examined the relationship between contralateral M1 (cM1) activation during MI and changes in sensorimotor performance. To aid cM1 activity modulation during MI, we used real-time fMRI neurofeedback-guided MI based on cM1 hand area blood oxygen level dependent (BOLD) signal in healthy subjects, performing kinesthetic MI of pinching. We used multiple regression analysis to examine the correlation between cM1 BOLD signal and changes in motor performance during an isometric pinching task of those subjects who were able to activate cM1 during motor imagery. Act...
In this study we investigated the potential prognostic role of morphological and quantitative dif... more In this study we investigated the potential prognostic role of morphological and quantitative diffusion tensor imaging (DTI) in patients with brainstem cavernoma (BSC) in terms of post-operative outcome. In this retrospective study of 14 brainstem cavernoma patients we analyzed pre- and postoperative DTI data. White matter tractography (WMT) of corticospinal tracts (CSTs) was performed using the Fiber Assignment by Continuous Tracking (FACT) algorithm and morphologic characteristics of CSTs were compared with clinically assessed motor strength. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in ipsi- and contralesional regions of interest (ROIs) at the lesion level, as well as levels caudal and rostral to the lesion. Correlation analysis was performed between lateral index (LI) of ipsi-/contralateral FA and ADC values and patients' motor function. Preoperatively, normal morphological features of CSTs corresponded to normal motor function in 4 pa...
Cerebral cortex (New York, N.Y. : 1991), Jan 26, 2014
Despite the crucial role of the brain in the control of the human lower urinary tract, little is ... more Despite the crucial role of the brain in the control of the human lower urinary tract, little is known about the supraspinal mechanisms regulating micturition. To investigate the central regulatory mechanisms activated during micturition initiation and actual micturition, we used an alternating sequence of micturition imitation/imagination, micturition initiation, and actual micturition in 22 healthy males undergoing functional magnetic resonance imaging. Subjects able to micturate (voiders) showed the most prominent supraspinal activity during the final phase of micturition initiation whereas actual micturition was associated with significantly less such activity. Initiation of micturition in voiders induced significant activity in the brainstem (periaqueductal gray, pons), insula, thalamus, prefrontal cortex, parietal operculum and cingulate cortex with significant functional connectivity between the forebrain and parietal operculum. Subjects unable to micturate (nonvoiders) showe...
Despite the crucial role of the brain in the control of the human lower urinary tract, little is ... more Despite the crucial role of the brain in the control of the human lower urinary tract, little is known about the supraspinal mechanisms regulating micturition. To investigate the central regulatory mechanisms activated during micturition initiation and actual micturition, we used an alternating sequence of micturition imitation/imagination, micturition initiation, and actual micturition in 22 healthy males undergoing functional magnetic resonance imaging. Subjects able to micturate (voiders) showed the most prominent supraspinal activity during the final phase of micturition initiation whereas actual micturition was associated with significantly less such activity. Initiation of micturition in voiders induced significant activity in the brainstem (periaqueductal gray, pons), insula, thalamus, prefrontal cortex, parietal operculum and cingulate cortex with significant functional connectivity between the forebrain and parietal operculum. Subjects unable to micturate (nonvoiders) showe...
Reports about standardized and repeatable experimental procedures investigating supraspinal activ... more Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy.
2011 International Conference on Virtual Rehabilitation, 2011
... Armin Curt, Sabina Hotz-Boendermaker Spinal Cord Injury Center Balgrist University Hospital Z... more ... Armin Curt, Sabina Hotz-Boendermaker Spinal Cord Injury Center Balgrist University Hospital Zurich, Switzerland ... G. Zeilig, S. Aito, G. Scivoletto, M. Mecci, RJ Chadwick, WS El Masry, A. Osman, GA Glass, P. Silva, BM Soni, BP Gardner, G. Savic, EM Bergström, V. Bluvshtein ...
The aim of this study was to quantitatively assess the field strength dependence of the transvers... more The aim of this study was to quantitatively assess the field strength dependence of the transverse relaxation rate (R(2) *) change in cortical gray matter induced by hyperoxia and hyperoxic hypercapnia versus normoxia in an intra-individual comparison of young healthy volunteers. Medical air (21% O(2) ), pure oxygen and carbogen (95% O(2) , 5% CO(2) ) were alternatively administered in a block-design temporal pattern to induce normoxia, hyperoxia and hyperoxic hypercapnia, respectively. Local R(2) * values were determined from three-dimensional, multiple, radiofrequency-spoiled, fast field echo data acquired at 1.5, 3 and 7 T. Image quality was good at all field strengths. Under normoxia, the mean gray matter R(2) * values were 13.3 ± 2.7 s(-1) (1.5 T), 16.9 ± 0.9 s(-1) (3 T) and 29.0 ± 2.6 s(-1) (7 T). Both hyperoxic gases induced relaxation rate decreases ΔR(2) *, whose magnitudes increased quadratically with the field strength [carbogen: -0.69 ± 0.20 s(-1) (1.5 T), -1.49 ± 0.49 s(-1) (3 T), -5.64 ± 0.67 s(-1) (7 T); oxygen: -0.39 ± 0.20 s(-1) (1.5 T), -0.78 ± 0.48 s(-1) (3 T), -3.86 ± 1.00 s(-1) (7 T)]. Carbogen produced larger R(2) * changes than oxygen at all field strengths. The relative change ΔR(2) */R(2) * also increased with the field strength with a power between 1 and 2 for both carbogen and oxygen. The statistical significance of the R(2) * response improved with increasing B(0) and was higher for carbogen than for oxygen. For a sequence with pure T(2) * weighting of the signal response to respiratory challenge, the results suggested a maximum carbogen-induced signal difference of 19.3% of the baseline signal at 7 T and TE = 38 ms, but a maximum oxygen-induced signal difference of only 3.0% at 1.5 T and TE = 76 ms. For 3 T, maximum signal changes of 4.7% (oxygen) and 8.9% (carbogen) were computed. In conclusion, the R(2) * response to hyperoxic respiratory challenge was stronger for carbogen than for oxygen, and increased quadratically with the static magnetic field strength for both challenges, which highlights the importance of high field strengths for future studies aimed at probing oxygen physiology in clinical settings.
In recent years, functional imaging studies have revealed a supraspinal network, which is involve... more In recent years, functional imaging studies have revealed a supraspinal network, which is involved in perception and processing of bladder distention. Very little information exists on the cortical representation of C-fiber transmitted temperature sensation of the human bladder, although C-fibers seem to be involved in the pathomechanisms of bladder dysfunctions. Our aim was, therefore, to evaluate the outcome of bladder cold stimulation on supraspinal activity using functional magnetic resonance imaging (fMRI). A block design fMRI study was performed in 14 healthy females at the MR-center of the University of Zurich. After catheterization, all subjects were investigated in a 3.0-Tesla Scanner. The scanning consisted of 10 repetitive cycles. Each cycle consisted of five conditions: REST, INFUSION, SENSATION, DRAIN 1, and DRAIN 2. Cold saline was passively infused at 4-8°C during scanning. Not more than 100 ml were infused per cycle. Blood-oxygen-level-dependent (BOLD) signal analysi...
With continuous refinement of neurosurgical techniques and higher resolution in neuroimaging, the... more With continuous refinement of neurosurgical techniques and higher resolution in neuroimaging, the management of pontine lesions is constantly improving. Among pontine structures with vital functions that are at risk of being damaged by surgical manipulation, cranial nerves (CN) and cranial nerve nuclei (CNN) such as CN V, VI, and VII are critical. Pre-operative localization of the intrapontine course of CN and CNN should be beneficial for surgical outcomes. Our objective was to accurately localize CN and CNN in patients with intra-axial lesions in the pons using diffusion tensor imaging (DTI) and estimate its input in surgical planning for avoiding unintended loss of their function during surgery. DTI of the pons obtained pre-operatively on a 3 Tesla MR scanner was analyzed prospectively for the accurate localization of CN and CNN V, VI and VII in seven patients with intra-axial lesions in the pons. Anatomical sections in the pons were used to estimate abnormalities on color-coded f...
Motor imagery (MI) has shown effectiveness in enhancing motor performance. This may be due to the... more Motor imagery (MI) has shown effectiveness in enhancing motor performance. This may be due to the common neural mechanisms underlying MI and motor execution (ME). The main region of the ME network, the primary motor cortex (M1), has been consistently linked to motor performance. However, the activation of M1 during motor imagery is controversial, which may account for inconsistent rehabilitation therapy outcomes using MI. Here, we examined the relationship between contralateral M1 (cM1) activation during MI and changes in sensorimotor performance. To aid cM1 activity modulation during MI, we used real-time fMRI neurofeedback-guided MI based on cM1 hand area blood oxygen level dependent (BOLD) signal in healthy subjects, performing kinesthetic MI of pinching. We used multiple regression analysis to examine the correlation between cM1 BOLD signal and changes in motor performance during an isometric pinching task of those subjects who were able to activate cM1 during motor imagery. Act...
In this study we investigated the potential prognostic role of morphological and quantitative dif... more In this study we investigated the potential prognostic role of morphological and quantitative diffusion tensor imaging (DTI) in patients with brainstem cavernoma (BSC) in terms of post-operative outcome. In this retrospective study of 14 brainstem cavernoma patients we analyzed pre- and postoperative DTI data. White matter tractography (WMT) of corticospinal tracts (CSTs) was performed using the Fiber Assignment by Continuous Tracking (FACT) algorithm and morphologic characteristics of CSTs were compared with clinically assessed motor strength. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured in ipsi- and contralesional regions of interest (ROIs) at the lesion level, as well as levels caudal and rostral to the lesion. Correlation analysis was performed between lateral index (LI) of ipsi-/contralateral FA and ADC values and patients' motor function. Preoperatively, normal morphological features of CSTs corresponded to normal motor function in 4 pa...
Cerebral cortex (New York, N.Y. : 1991), Jan 26, 2014
Despite the crucial role of the brain in the control of the human lower urinary tract, little is ... more Despite the crucial role of the brain in the control of the human lower urinary tract, little is known about the supraspinal mechanisms regulating micturition. To investigate the central regulatory mechanisms activated during micturition initiation and actual micturition, we used an alternating sequence of micturition imitation/imagination, micturition initiation, and actual micturition in 22 healthy males undergoing functional magnetic resonance imaging. Subjects able to micturate (voiders) showed the most prominent supraspinal activity during the final phase of micturition initiation whereas actual micturition was associated with significantly less such activity. Initiation of micturition in voiders induced significant activity in the brainstem (periaqueductal gray, pons), insula, thalamus, prefrontal cortex, parietal operculum and cingulate cortex with significant functional connectivity between the forebrain and parietal operculum. Subjects unable to micturate (nonvoiders) showe...
Despite the crucial role of the brain in the control of the human lower urinary tract, little is ... more Despite the crucial role of the brain in the control of the human lower urinary tract, little is known about the supraspinal mechanisms regulating micturition. To investigate the central regulatory mechanisms activated during micturition initiation and actual micturition, we used an alternating sequence of micturition imitation/imagination, micturition initiation, and actual micturition in 22 healthy males undergoing functional magnetic resonance imaging. Subjects able to micturate (voiders) showed the most prominent supraspinal activity during the final phase of micturition initiation whereas actual micturition was associated with significantly less such activity. Initiation of micturition in voiders induced significant activity in the brainstem (periaqueductal gray, pons), insula, thalamus, prefrontal cortex, parietal operculum and cingulate cortex with significant functional connectivity between the forebrain and parietal operculum. Subjects unable to micturate (nonvoiders) showe...
Reports about standardized and repeatable experimental procedures investigating supraspinal activ... more Reports about standardized and repeatable experimental procedures investigating supraspinal activation in patients with gait disorders are scarce in current neuro-imaging literature. Well-designed and executed tasks are important to gain insight into the effects of gait-rehabilitation on sensorimotor centers of the brain. The present study aims to demonstrate the feasibility of a novel imaging paradigm, combining the magnetic resonance (MR)-compatible stepping robot (MARCOS) with sparse sampling functional magnetic resonance imaging (fMRI) to measure task-related BOLD signal changes and to delineate the supraspinal contribution specific to active and passive stepping. Twenty-four healthy participants underwent fMRI during active and passive, periodic, bilateral, multi-joint, lower limb flexion and extension akin to human gait. Active and passive stepping engaged several cortical and subcortical areas of the sensorimotor network, with higher relative activation of those areas during active movement. Our results indicate that the combination of MARCOS and sparse sampling fMRI is feasible for the detection of lower limb motor related supraspinal activation. Activation of the anterior cingulate and medial frontal areas suggests motor response inhibition during passive movement in healthy participants. Our results are of relevance for understanding the neural mechanisms underlying gait in the healthy.
2011 International Conference on Virtual Rehabilitation, 2011
... Armin Curt, Sabina Hotz-Boendermaker Spinal Cord Injury Center Balgrist University Hospital Z... more ... Armin Curt, Sabina Hotz-Boendermaker Spinal Cord Injury Center Balgrist University Hospital Zurich, Switzerland ... G. Zeilig, S. Aito, G. Scivoletto, M. Mecci, RJ Chadwick, WS El Masry, A. Osman, GA Glass, P. Silva, BM Soni, BP Gardner, G. Savic, EM Bergström, V. Bluvshtein ...
The aim of this study was to quantitatively assess the field strength dependence of the transvers... more The aim of this study was to quantitatively assess the field strength dependence of the transverse relaxation rate (R(2) *) change in cortical gray matter induced by hyperoxia and hyperoxic hypercapnia versus normoxia in an intra-individual comparison of young healthy volunteers. Medical air (21% O(2) ), pure oxygen and carbogen (95% O(2) , 5% CO(2) ) were alternatively administered in a block-design temporal pattern to induce normoxia, hyperoxia and hyperoxic hypercapnia, respectively. Local R(2) * values were determined from three-dimensional, multiple, radiofrequency-spoiled, fast field echo data acquired at 1.5, 3 and 7 T. Image quality was good at all field strengths. Under normoxia, the mean gray matter R(2) * values were 13.3 ± 2.7 s(-1) (1.5 T), 16.9 ± 0.9 s(-1) (3 T) and 29.0 ± 2.6 s(-1) (7 T). Both hyperoxic gases induced relaxation rate decreases ΔR(2) *, whose magnitudes increased quadratically with the field strength [carbogen: -0.69 ± 0.20 s(-1) (1.5 T), -1.49 ± 0.49 s(-1) (3 T), -5.64 ± 0.67 s(-1) (7 T); oxygen: -0.39 ± 0.20 s(-1) (1.5 T), -0.78 ± 0.48 s(-1) (3 T), -3.86 ± 1.00 s(-1) (7 T)]. Carbogen produced larger R(2) * changes than oxygen at all field strengths. The relative change ΔR(2) */R(2) * also increased with the field strength with a power between 1 and 2 for both carbogen and oxygen. The statistical significance of the R(2) * response improved with increasing B(0) and was higher for carbogen than for oxygen. For a sequence with pure T(2) * weighting of the signal response to respiratory challenge, the results suggested a maximum carbogen-induced signal difference of 19.3% of the baseline signal at 7 T and TE = 38 ms, but a maximum oxygen-induced signal difference of only 3.0% at 1.5 T and TE = 76 ms. For 3 T, maximum signal changes of 4.7% (oxygen) and 8.9% (carbogen) were computed. In conclusion, the R(2) * response to hyperoxic respiratory challenge was stronger for carbogen than for oxygen, and increased quadratically with the static magnetic field strength for both challenges, which highlights the importance of high field strengths for future studies aimed at probing oxygen physiology in clinical settings.
Uploads
Papers by Spyros Kollias